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Abstract

With advances in deep convolutional neural networks
(DCNNs), monocular depth estimation has shown very
promising results. However, most existing methods han-
dle depth estimation as a supervised regression problem,
which suffers from acquiring per-pixel ground-truth depth
data at scale. To overcome this limitation, recent works
approached in a self-supervised manner, by addressing the
monocular depth prediction task as a reconstruction prob-
lem. In this paper, we propose three new ideas to enhance
self-supervised monocular depth estimation: 1) laplacian
pyramid, 2) receptive field block and 3) brightness con-
sistency loss. Laplacian pyramid incorporated in the de-
coder architecture can successfully emphasize the differ-
ence across the scale spaces, which can precisely estimates
the depth boundary as well as the global layout. Recep-
tive field block on encoder architecture gives a great help to
incorporate more discriminative feature representation and
improve flow of gradients. Brightness consistency loss is
designed to relax the luminance difference between frames.
Empirical evaluation on the KITTI dataset demonstrates the
effectiveness of our approach.

1. Introduction

Depth estimation from 2D images has been studied in
computer vision for long time and nowadays applied to
robotics, autonomous driving cars, 3D reconstructions and
scene understanding. Those approaches usually relied on
multiple instances of the same scene such as stereo image
pairs, multiple frames from moving camera, or static cap-
tures under different lighting conditions. As depth estima-
tion from multiple observations have enjoyed great success,
it naturally lead to depth estimation with a monocular image
since it demands less cost and constraint.

Depth estimation from a single image have been lim-
ited by traditional approaches because it is an inherently
ill-posed problem. However, deep learning has achieved re-
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Figure 1: Our self-

Depth from monocular image.
supervised model produces sharp, high quality depth maps.

markable growth by learning not only image features but
also peripheral information such as camera pose, optical
flow, surface normal, segmentation etc., to approach the
level of performance obtained by binocular images. Most
existing methods treat monocular depth estimation as a su-
pervised regression problem and as a result, require vast
quantities of ground-truth data for training, which is very
costly. For instance, in the scenario of depth estimation
for autonomous driving, it implies driving a car equipped
with a laser LIDAR scanner for hours under diverse light-
ning and weather conditions. Self-Supervised methods re-
place the used of explicit depth data during training with
easier-to-obtain synchronized stereo pairs [7] or monocu-
lar video [30]]. By hallucinating the depth for a given image
and projecting it into nearby views, the model is trained by
minimizing the image reconstruction error. In other words,
self-supervised methods treat depth estimation as an image
reconstruction problem.

In this paper, we propose three architectural and loss in-
novations for self-supervised monocular depth estimation.
1) laplacian pyramid 2) receptive field block and 3) bright-
ness consistency parameters. Our proposed laplacian pyra-
mid precisely interprets the relation between the encoded
features and the final output for monocular depth estima-
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Figure 2: Overview of the proposed network architecture. (a) Depth Network: The input monocular image is encoded
using ResNet with RF blocks. The encoded features are fed into stacked convolution blocks to generate sub-band depth
residuals at each pyramid level. (b) Pose Network: Pose and brightness difference between a pair of frames is predicted with
a seperate pose network. (¢) RF & Laplacian Blocks: The RF block efficiently capture encoded features with large receptive
field. The ASPP module consists of 3 dilated convolutional layers with kernel size and dilated rate 3, 5, 7 respectively.
Laplacian pyramid block gives a guide to decoding process with residuals of the input color image with the depth residuals

at each pyramid level.

tion. Laplacian has been used in various fields of scene
understanding because of its ability to preserve the local
information of the given data [13]. We exploit laplacian
pyramid-based decoder architecture, which is highly rele-
vant to object boundaries, to precisely interpret the rela-
tion between the encoded features and the final output for
monocular depth estimation. Specifically, the encoded fea-
tures are fed into stacked convolution blocks to generate
sub-band depth residuals at each pyramid level. Depth net-
work consists of basic encoder-decoder structure. Good
encoding is necessary to produce good output. Of course,
ResNet [[L0] has been verified as a good feature extractor in
many fields. ResNet [[10] consists of a single kernel struc-
ture of 3x3, which is somewhat unfortunate in the collection
of multiple scale information through the receive field ex-
tension. To compensate for this, we applied a module called
RFB [12] between ResNet [10] Feature steps. RFB [12]
modules are applied with kernel and dilation of various
sizes, expanding the Receive Field while minimizing the in-
crease in parameters. If stereo images are processed as in-
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put, the image-pair is synchronized in time. There is a tem-
poral difference between frames when the video(sequence
of image) becomes input. When we compute reprojec-
tion error, we assume brightness consistency. However,
due to the aforementioned temporal difference, brightness
changes occur frequently in real environments.These differ-
ences result in unnecessary loss. A brightness consistency
parameter [26] is a parameter learned within a network that
compensates for the brightness difference between adjacent
frames. Before computing the final loss, the brightness of
the reconstructed image is corrected by the parameters to
minimize the occurrence of unnecessary loss. Examples of
depth estimation by the proposed method are shown in
[[l The whole network is trained in an end-to-end manner
without stage-wise training or iterative refinement. Experi-
ments on the KITTI dataset [6]].

The remainder of this paper is organized as follows. A
comparative review of related works is presented in[Section]|

2] The proposed network is explained in detail in[Section 3]
In experimental results are demonstrated on the



KITTI dataset. The conclusion follow in

2. Related Work

Monocular depth estimation is an inherently ill- posed
problem. Early trial for estimating depth from single im-
age used had-made feature and probability graphical model.
These days, most are trying using modern deep learning.

2.1. Supervised Depth Estimation

According to same input image, there are multiple pos-
sible depths. To address this problem, a learning-based
method has been used and has had many successes. There
have been many attempts to apply end-to-end supervised
learning to depth [3], [Sl], [1L1]]. The accuracy was increased
by using various ideas as well as the structure of the net-
work. For example, attempts are made to turn depth estima-
tion into an ordered regression problem. [5]].

However, fully supervised learning has fundamental lim-
itations. That is, it requires an elaborately crafted ground
truth. Because, obtaining good quality depth information is
costly process. As a result, many attempts have been made
for partial or weak level supervised learning. e.g. Using
known object size [25], learning ordinal depths [31], or us-
ing synthetic depth [[16], all while these methods still re-
quire additional information, which are a little cheaper than
fully-supervised but still costly.

2.2. Self-Supervised Depth Estimation

Self-supervised depth estimation does not require
ground truth depth. One way to train depth estimation
without ground truth depth is to learn from image recon-
struction. These models use stereo image pairs as input,
or continuous monocular image frame.In the training ,
the other images are reconstructed using only one of the
sequence images or the paired images. At this time, errors
are reduced by training the disparity.

Self-Supervised Stereo Training

One method in self-supervised learning is to use syn-
chronous stereo-pairs. The synchronized stereo-pairs itself
contain depth information. The relationship between dis-
parity and depth is linear. Therefore, disparity is itself infor-
mation directly about depth. This is how a binocular cam-
era measures depth, the same principle as a human detects
depth. In the training, the model learns disparity by the re-
constructing image loss.

There have been many attempts, and recently, show su-
perior result by adding a left-right consistency term [7].The
method based on stereo is expanding in several direc-
tions. There are attempts to use GAN [18] or another
consistency [20]. There are also attempts for real-time
inference [19]. Although there are many improvement
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in terms of data collection through self-supervised stereo
training, the need for a stereo image for monocular depth
estimation is still inefficient.

Self-Supervised Monocular Training

Self-supervised monocular training uses monocular se-
quence image as input information. That’s just using the
video taken with a monocular camera. This video contains
temporal information. For depth estimation through video,
information about the camera pose is also required. The
good news is that pose estimation is only needed in the
training phase.

Monocular depth estimation has several assumptions.
The objects in the input are stationary, and the same ob-
ject has the same shape. However, in the real environ-
ment, changes in light also occur and there are moving ob-
jects. Early models of self-supervised monocular training
suffered from these challenge [30]. The time difference
of monocular video created more challenges to solve than
stereo, which resulted in lower performance. Recently, the
performance gap between self-supervised monocular and
stereo is narrowing. many techniques have been used to
mask non-rigid scenes to improve performance [23]]. Var-
ious methods have been tried, such as strengthening the
relationship of edges [27], using a depth normalization
layer [24], or creating a mask using pre-trained instance
segmentation [1].

2.3. Laplacian Pyramid

Depth decoder utilizes a deconvolution [17] network.
This is a learnable upsampling kernel. Although it is much
more accurate than upsampling by simple interpolation, it
is still difficult to expand compressed information again.
Therefore, to supplement this part, it is very common to
use skip-connection.

From a similar point of view, laplacian pyramid was used
to convey more information about the boundary of objects.
Laplacian has been used in various fields of scene under-
standing because of its ability to preserve the local informa-
tion of the given data [13]. The laplacian filter is known to
extract high-frequency signals well in the field of traditional
computer vision. Considering the high frequency signal in
terms of the image, the pixel value change is a big part, and
this is the boundary of the object. The laplacian pyramid
information processed in the encoder stage is progressively
delivered to the decoder as a skip-connection.

2.4. Receptive Field Block

ResNet, which is often used as an encoder, uses only
a 3x3 kernel. This is not a good method from the point
of view of the Receptive Field that collects information of
various scales.

GoogleNet [22], known as Inception Block, acquires



multi-scale information using various kernel sizes. How-
ever, the use of a large size kernel leads to an increase in
the number of parameters. This leads to an increase in the
amount of computation. For ASPP [9], dilated convolution
introduces the concept of dilation to secure a wide recep-
tive field without a large increase in parameters. However,
ASPP causes a lot of information to be lost due to uniform
kernel application.

In order to minimize the information lost, RFB [12] uses
various size of kernels according to the dilation to mini-
mize the information lost while expanding the RF (Recep-
tive Field).

3. Method

We will focus on the main idea we present: 1) Laplacian
pyramid based depth estimation 2) Receptive Field Block
3) Brightness Consistency parameters. Monodepth2 [8] is
used as the baseline.

3.1. Baseline:Monodepth2

Monodepth2 [8§] is trained by estimating the target im-
age as a different view point. The core concept of the
monocular depth estimation network is the self-supervised
training scheme which simultaneously learns depth with
DepthNet and motion with PoseNet using video sequences.
The loss in this network is designed to minimize the photo-
metric reprojection error L,,. The relative pose of the target
image I, for the source image I is expressed in T3/ _,;.

L, = ming pe(L, It/ )
Iy ¢ = Iy < proj(Dy, Ty i >
(D

pe is a photometric reconstruction error. proj() are esti-
mated 2D coordinate by Depth D; in source image I;/. <>
is the sampling operator. K is pre-computed camera intrin-
sics K. Both SSIM and L1 distance were used to calculate
pe.at each pixel, instead of averaging the photometric er-
ror over all source images, we simply use the minimum(see
Fig. 2).

pellu, 1) = 5 (1= SSIM (I, 1) +(1 = a) [ s = L
Ly = [0xd;| e 1% 4 |0, d; | e 19Tl
2
where =0.85. Asiin [7] we use edge-aware smoothness
where d = d;/d; is the mean-normalized inverse depth

from [24] to discourage shrinking of the estimated depth.
For monocular training, we use the two frames temporally
adjacent to I as source frame, i.e. Iy = {l;_1,I;41}-
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do [

Figure 3: The reprojection with adjacent frame.

)
- N

In addition, Auto-masking Stationary Pixel and Multi-scale
Estimation were added to improve performance. Mask ob-
jects with motion in the video to prevent inaccurate loss cal-
culations. [] is the Iverson bracket. When calculating the
final loss, multiply by pe to make a mask.

n= [mint/pe(lt, It’—)t) < mint/pe(It, It’)] 3)

Final Training Loss

The final loss is computed by applying per-pixel smooth-
ness and Auto-mask to the photometric loss and by applying
the average to the pixel, scale, and batch.

L=puL,+ L, )

3.2. Laplacian Pyramid-Based Depth Estimation

To extract information about the boundary of the im-
age, we apply a Laplacian filter to the initial input im-
age.Features extracted from the Laplacian filter are passed
through skip-connections to give guidelines to the decoder.
To give guidelines to all stages of decoder, downsample to
the decoder output size. In summary, the output of the de-
coder is concatenated with the downsampled Laplacian fea-
ture and an feature is passed through skip-connection in the
encoder. This combined feature is passed on to the next
stage of decoder(see Fig.2)

3.3. Receptive Field Block

ResNet itself is a very good Encoder, but RFB [12] is
used to encode multi-scale information by a wide reception
field during the Encoding phase. RFB has been applied to
encode Feature in all phases (5 stage) of ResNet(see Fig.
2).The RFB’s internal structure branches into one 1x1, 3x3,
5x5, 7x7 kernels and one short cut. Each branch then broad-
ens the receiveive field through a kernel size dilation .e.g.
3x3 kernel; 3 dilation, 5x5 kernel; 5 dilation. Finally, con-
catenate it and make it the same as the original channel via
1x1 conv, sending the ResNet at the next stage. Apply Batch
Norm between convs to minimize optimization problems.



. lower is better higer is better
Method Train 3
AbsRel | SqRel | RMSE | RMSElog || 6 <125 [ §<1.25 | 4§ <125
Zhou [30] M 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yang [28] M 0.182 1.481 | 6.501 0.267 0.725 0.906 0.963
Mahjourian [[15] M 0.163 1.240 | 6.220 0.250 0.762 0.916 0.968
GeoNet [29] M 0.149 1.060 | 5.567 0.226 0.796 0.935 0.975
DDVO [24] M 0.151 1.257 | 5.583 0.228 0.810 0.936 0.974
DF-Net [32] M 0.150 1.124 5.507 0.223 0.806 0.933 0.973
LEGO [27] M 0.162 1.352 6.276 0.252 - - -
Ranjan [21] M 0.148 1.149 | 5.4064 0.226 0.815 0.935 0.973
EPC++ [14] M 0.141 1.029 | 5.350 0.216 0.816 0.941 0.976
Struct2depth [1]] M 0.141 1.026 | 5.291 0.210 0.845 0.948 0.977
Monodepth2 [8] M 0.115 0.924 | 4.852 0.193 0.876 0.958 0.981
Monodepth2 + Laplacian M 0.113 0.876 | 4.796 0.191 0.881 0.959 0.981
Monodepth2 + RF M 0.112 0.904 | 4.851 0.195 0.877 0.958 0.979
Monodepth2 + Brightness M 0.117 0.890 | 4.888 0.194 0.870 0.959 0.982
Ours M 0.111 0.870 | 4.796 0.191 0.881 0.959 0.982

Table 1: Quantitative results. Comparison of our method to existing methods and baseline method on KITTI 2015 [6] using
the Eigen split. Best results in each category are in bold, with second best results underlined. (M - Self-supervised mono

supervision)

Figure 4: I, Examples of brightness affine transform.
From top to bottom: input image, calibrated input image,
source image by brightness calibration.

3.4. Brightness Consistency Parameters

The photometric reprojection error is based on the
brightness constancy assumption. However, it can be vi-
olated due to illumination changes and auto-exposure of
the camera to which both L1 and SSIM are not invariant.
Therefore, we propose to explicitly model the camera ex-
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posure change wight predictive brightness transformation
parameters. The change of the image intensity due to the
adjustment of camera exposure can be modeled as an affine
transformation with two parameters a, b.

I =al +b )

Despite its simplicity, this formulation has been shown
to be effective in [4]which builds upon the brightness con-
stancy assumption as well. we propose predicting the trans-
formation parameters a, b which align the brightness condi-
tion of source images [, with input image I,. We reformu-
late photometric error equation with brightness transforma-
tion parameters.

,b

Lp = mintpe(-rt’ I;l’at) (6)
with
I3, = aly + @

where a and b are the transformation parameters align-
ing the illumination of I; to I;. Both parameters can be
trained in a self-supervised way without any supervisional
signal(see Fig. 3).

4. Experiments

Here, we validate that (1) our Laplacian Pyramid method
(2) our RF block method (3) our brightness consistency
loss method compared to baseline method. We evaluate our
models, named Monodepth3, on the KITTI 2015 [6] stereo
dataset, to allow comparison with baseline method.



Figure 5: Qualtative results on the KITTI Eigen splits.

4.1. KITTI Eigen Split

We use the data split of Eigen et al. [2] 39,810 for train-
ing and 4,424 for validation. We use the same instrinsics for
all images, setting the principal point of the camera to the
image center and the focal length to the average of all the
focal lengths in KITTI. During evluation, we cap depth to
80m per standard practice[7]. For our monocular models,
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Left: input image; Middle: Monodepth2; Right: Ours

we report results using the per-image median ground truth
scaling introduced by [30].

We compare the results of several variants of our model,
trained with monocular video only(M). The upper part of
Table 1. shows the comparison with existing models and
baseline model which trained with monocular setting. The
results demonstrate that the proposed depth estimation net-
work outperforms Monodepth2 on majority metrics. Quali-



tative results can be seen in Fig. 4.

4.2. Benefits of Laplacian Pyramid

Laplacian pyramids extract high frequency components
of input data. By recovering depth residuals from encoded
features in different levels of laplacian pyramid, the pro-
posed method successfully restores local details e.g depth
boundary as well as global layout.

4.3. Benefits of RF

Receptice Field Block uses various size of kernels to
minimize the information lost. By recovering depth resid-
uals in different size of kernels on encoder, the proposed
method successfully minimize the information lost.

4.4. Benefits of Brightness Consistency Parameters

The full Eigen KITTT split data does not contain large il-
lumination change at adjacent frames. So, our additional
Brightness Consistency parameters affect very little im-
prove at KITTI Dataset. However, our method slightly out-
perform the baseline method.

4.5. Implementation details

batch size = 12, learning rate = 0.0001, number of epochs
= 20, number of resnet layers = 18, image = 1922640,
disparity smoothness = 0.001, min depth =0.1m, max
depth= 100m, baseline method = Automasking , Multi —
scaleequal size E stimation

5. Conclusion

Here, we validate that (1) our Laplacian Pyramid (2)
our Receptive filed block (3) our brightness consistency
loss compared to baseline reprojection loss. We evaluate
our models, named Monodepth3, on the KITTI 2015 stereo
dataset, to allow comparison with baseline method.
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