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Abstract

Despite generating high-quality images, traditional
Generative Adversarial Networks (GANs) have shown a
lack of modifying already generated images. However, ac-
cording to recent works, it is feasible to attain a set of
interpretable directions for image manipulation in the la-
tent space of the style-based GAN architecture (StyleGAN)
under the supervised or unsupervised manner. In particu-
lar, some state-of-the-art models, such as GANSpace and
StyleCLIP, manipulate a human facial image very naturally
along the desired direction. Nevertheless, such approaches
mainly assume a significant variation of a face, such as
a change of gender or age, happens along only a one-
dimensional axis as other typical face attributes. Further-
more, their proposed direction is global across the entire
latent space. Unfortunately, such linear change of the la-
tent vector yields escape from the manifold it belonged to
and significantly degrades the quality of the generated im-
age. To address these issues, we propose a method to output
different manipulation results for a given semantic without
escaping from the latent manifold. This approach allows us
to obtain much more diverse and high-quality facial images
compared to existing state-of-the-art models.

1. Introduction
Modern Generative Adversarial Networks (GANs) [8],

like ProGAN [12], BigGAN [3], StyleGANs [14, 15, 13],
have shown remarkable abilities to synthesize a variety of
high-fidelity images. Unfortunately, despite the high qual-
ity of the output images, it is still challenging to modify
a generated sample in the desired direction by adjusting
its latent vector while preserving its quality. Several ap-
proaches [18, 9, 19, 16] interpret which latent direction
represents a meaningful semantic part and thus make the
user control for image manipulation possible. In particular,
StyleCLIP [16], a state-of-the-art text-driven manipulation
model, shows outstanding results in facial image manipula-
tion and introduces many attractive directions to be tuned,
such as gender, age, pose, hairstyle, and a specific person’s

Figure 1. The main concept of our work. We propose a method
to manipulate a given facial image while obtaining both diversity
and high quality simultaneously, compared to StyleCLIP, a state-
of-the-art text-driven image manipulation model.

style.
However, there are two major problems with these image

manipulation methods. One problem is that some seman-
tic attributes, such as age and gender, have the potential to
vary enormously, and existing technique often treat them as
if they were one-dimensional. In general, any given facial
image can grow old or be changed to another gender in dif-
ferent ways, not along a single axis, as shown in Figure 1.
Another problem is that when modifying a particular image,
previous methods just move the latent vector only linearly
along the global direction [18, 9, 16]. The use of a global
direction is convenient in that it reduces the inference time,
but it degrades the quality of image manipulation at some
local points since it is commonly applied to all points in the
latent manifold. Figure 2 shows that a manipulation along
the global direction eventually leads to extremely poor qual-
ity. Due to these two problems, previous approaches provide
only little insight in exploring the high-dimensional image
manifold derived from GANs.

In this paper, we address these issues by proposing a
method to output different manipulation results for a given
semantic without escaping from the latent manifold. In-
deed, we apply stochastic iterative traversal with a global
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Figure 2. High intensity of image manipulation along a global
direction eventually leads to extremely poor quality. This phe-
nomenon can be interpreted as the latent vector escaping the latent
manifold W+. In this figure, we adopt a global direction corre-
sponding to the text prompt ‘old’. For the implementation details,
see Section 5.1.

direction from StyleCLIP [16], based on the iterative curve-
traversal introduced in [5]. The main concept is substituting
the global direction to a local basis vector, which is the most
similar to the global direction. Here, the local basis is ob-
tained from the singular value decomposition (SVD) of the
Jacobian matrix of the mapping network in StyleGAN [5].
This technique guarantees the latent vector not to escape
from the latent manifold W+ so that the quality of gener-
ated image is always preserved during the traversal. More-
over, we further increase the diversity of generated images
by introducing randomness of the step size for each itera-
tion. Figure 3 and Figure 4 show relatively diverse image
manipulation compared to StyleCLIP [16].

Our contributions are summarized as the followings:

• We propose a method to obtain both diversity and high
quality of manipulated images for a coarse-level se-
mantic attribute.

• We identify that image manipulation along the global
direction makes the latent vector escape from the man-
ifold and yields a poor-quality result.

2. Related Works
Style-based generators In recent years, GANs equipped
with style-based generators [14, 15] have shown state-of-
the-art performance in terms of high-fidelity image syn-
thesis. The style-based generator consists of two parts: a
mapping network, which encodes the initial latent code
z ∈ Z to the style codes w ∈ W , and a synthesis net-
work, which takes the style codes w as the input and yields
an image as the output. Specifically, StyleGAN [14] uses
the style codes to control channel-wise means and vari-
ances through Adaptive Instance Normalization (AdaIN)
[10], while StyleGAN2 [15] uses the style codes to control
channel-wise variances by modulating the weights of each
convolution layer. Despite the considerable improvement of
image quality, however, there lacks enough understanding
about the influence of a slight movement in the warped in-
termediate latent space W [14] on the image space. Thus,
the need for research to analyze and control the latent space
of the style-based generators emerges.

Latent Semantic Interpretation A large number of
GAN models have a high potential for learning semantic
factors from data. [4] add a regularization term to learn an
interpretable factorized representation. [2] encode a vari-
ety of semantic factors in the intermediate feature space.
Also, [11, 7, 23, 18] enable user control over the seman-
tic attributes of the output under supervised learning of la-
tent directions. Unlike these methods that work in the su-
pervised manner, [21] propose an unsupervised optimiza-
tion method to jointly learn a candidate matrix and a cor-
responding reconstructor, which identifies the semantic di-
rection in the matrix. [9] find a global basis ofW for latent
space control using Principal Component Analysis (PCA),
without any labels of output images. [19] propose a closed-
form factorization of latent semantics without any sampling
or additional training, while [9] require a large number of
random sampling of latent vectors. [16] achieve state-of-
the-art performance in text-driven image manipulation of
StyleGAN imagery, dealing with three different points of
view: latent optimization, latent mapper, and global direc-
tions. Meanwhile, most of the recent works focus on a con-
trollable change along a fixed semantic direction. In other
words, when a facial attribute that we want to control is
determined, previous methods manipulate the correspond-
ing semantic part as if it is one-dimensional. Even though
[9] has a stochastic property due to Monte-Carlo sampling
of latent vectors, the set of global directions obtained from
the induced PCA basis is fixed during inference. In this as-
pect, our proposed methods aim to vary the results of facial
image manipulation when the target attribute is one of the
fundamental features of the human face, like gender, age,
or emotions, primarily based on the architectures of Style-
CLIP [16]. To the best of our knowledge, there has been no
approach adopted this kind of viewpoint.

Latent Optimization One of the simple approaches to
guide image manipulation is optimizing the latent w ∈ W+

with an adequate loss. To obtain a manipulated image con-
taining the desired semantic, StyleCLIP [16] introduce two
novel methods, the Latent Optimization and the Latent
Mapper, while considering facial consistency as well as tar-
geting features. Given a source latent code ws ∈ W+ and
a text prompt t, the Latent Optimization has an objective
function as the following:

arg min
w∈W+

L(G(w), t) + λw‖w − ws‖2 + λIDLID(w), (1)

where L is a CLIP [17] loss and G is a pre-trained Style-
GAN2 generator. Note that the consistency of generated im-
age is forced by the L2-regularization in the latent spaceW
and the following identity loss:

LID(w) = 1− 〈R(G(ws)), R(G(w))〉, (2)
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where R is a pre-trained ArcFace [6] network for face
recognition. Unfortunately, this method is highly sensitive
to hyperparameters λw and λID, indicating it is not practi-
cal. To address this issue, StyleCLIP also suggest the Latent
Mapper, derived from the Latent Optimization, to further
learn the change of semantics at each latent vector inW+.
However, despite their remarkable performance, the resul-
tant mapper networks are all distinct for each image and
each text prompt. Thus, this method has a disadvantage that
the training time is too long (about 10 - 12 hours per a sin-
gle image and a single text, according to Table 1 in [16]).
Our proposed method is similar to these optimization tech-
niques in that it follows the desired direction in the latent
space. Nevertheless, our work does not depend on a specific
loss, such as (1), which can limit the diversity of results. In-
stead, we maintain the image quality by trying to keep the
latent vector from leaving the manifold, and significantly
improve the execution time by exploiting only closed-form
computations such as SVD.

3. Background

Our work is primarily based on StyleCLIP [16], which
show a state-of-the-art performance in text-driven image
manipulation. In StyleCLIP, there are two representative
manipulation methodologies; one to solve the optimization
problem for each image, and the other to find a unique
global direction for each desired property. These methods
are complementary to each other and have some drawbacks.
Our approach mainly improves these drawbacks while gen-
erating various images on one feature.

3.1. Global Direction

One method proposed in [16] aims to find a global direc-
tion ∆s which indicates the change of a specific trait given
by a text prompt. Under the assumption of the existence
and the uniqueness of the global direction ∆s in the style
space S [22], the objective is to find ∆s that G(s + α∆s)
represents the semantic attribute stronger than G(s), where
α > 0 is a hyperparameter.

Explicitly, we start from a text embedding. Let ∆t be
the difference between a neutral text embedding and a tar-
get text embedding. For instance, when manipulating a per-
son’s face older, a target text can be written as ‘an elderly
person’ or ‘an old person’ or ‘an old man’ in each case.
Here, the neutral class for each text prompt can be defined
by ‘a person’ or ‘a man.’ Then we obtain ∆t by subtracting
the embedded vector of the neural text from the embedded
vector of the target text. Additionally, prompt engineering is
also required, as shown in [16]. Similarly, we define i+ ∆i
and i by the embedded vectors of G(s+ ∆s) and G(s), re-
spectively. Finally, the goal is to find a vector ∆s such that
the induced ∆i highly correlates to ∆t already obtained.

Now, let ∆sc be zero except the c-th component, which
is set to the standard deviation of the channel from 100 im-
age samples. By defining ∆ic as the difference between the
embedded vectors of G(s + α∆sc) and G(s − α∆sc), we
measure

Rc(∆i) = Es∈S [∆ic ·∆t], (3)

where Rc stands for the relevance of the channel c with the
attribute and α is set to 5, which is the magnitude of the
perturbation. Next, we apply a threshold β. If |Rc| does not
exceed β, then we regard the channel c as a negligible part,
i.e, having no relationship with the attribute ∆t. Finally, we
define ∆s by:

[∆s]c =

{
Rc if |Rc| ≥ β,
0 otherwise.

(4)

[16] empirically show that the global direction shows bet-
ter performance than the optimization method. Nonetheless,
the global direction always pushes all latent vectors along
only one direction, contrary to the optimization method
which considers the local properties of the latent space. This
causes two major problems: in terms of diversity and qual-
ity. First, the global direction severely deteriorates the di-
versity of manipulated samples. For instance, when manip-
ulating a person older, it eventually makes the similar old
person even if the starting images are different, since ‘the
old man’ corresponds to a unique global direction. Further-
more, as shown in Figure 2, high intensity of manipulation
along a global direction yields poor-quality images since
the global direction hardly considers the local property. On
the other hand, our proposed method acquires both diversity
and quality of manipulated images; because it embraces the
global direction when finding the most similar vector while
exploiting the advantages of the optimization method.

3.2. Subspace Traversal

One of the main concepts of StyleGAN is the following
mapping network:

f : Z → W, (5)

where Z is the latent space with a Gaussian distribution,W
is the intermediate latent space, and f is an eight-layered-
MLP. This mapping network enables to feed of disentan-
gled and refined vectors as a new input to the StyleGAN
generator. However, not all elements of W generate what
we intended, and several images generated from arbitrary
latent vectors in W are even unrecognizable. Hence, let I
be a subspace of W that yields photo-realistic images. [5]
observe that the necessary condition for a latent vector in
W to belong to I is that the vector should be in the range of
f : Z → W . In other words, the following identity holds:

I ⊆ f(Z) (W. (6)
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(a) (b)

(c) (d)

Figure 3. Comparison of StyleCLIP and our proposed method on a change of age: (a) linear traversal along the global direction ‘old’ from
StyleCLIP, (b) iterative traversal along our local basis vector, which is the most similar to the global direction ‘old’ from StyleCLIP, (c)
linear traversal along the opposite global direction ‘old’ from StyleCLIP, (d) iterative traversal along our local basis vector, which is the
most similar to the opposite global direction ‘old’ from StyleCLIP. Note that the old man in the first row of (c) and (d) is from the last row
of the seventh column in (b).
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For further analysis, assume that I is a k-submanifold
embedded in W . Then our objective is to force the latent
vector to traverse in manifold I. A simple but efficient
method is to restrictW into k-dimensional subspace locally.
First, let

J(z) =
∂f

∂z
(z), (7)

and denote the tangent space of I by

TwW = {J(z)x : x ∈ Rm} , (8)

where w = f(z), and m is the dimension of Z . Note that
the most actively changing k-subspace is the (locally) best
approximation of I.

Finally, to obtain a proper basis for k-subspace I inW ,
the singular value decomposition (SVD) of (7) can be ex-
ploited as the following:

J(z) = UΣV T , (9)

where U and V are orthogonal matrices, and Σ is a diagonal
matrix consisting of singular values. Here, the columns ofU
form a basis ofW , and the columns of V form a basis of Z .
In particular, the columns of U which correspond to the top
k singular values are exactly the desired local coordinate of
W at w ∈ I.

4. Methods
In this section, we develop Section 3 to obtain photo-

realistic manipulated images. First, we naturally expand the
discussion in Section 3.2 to W+ space [14, 1]. Next, we
combine this with the global direction introduced in Section
3.1 to obtain diverse images.

4.1. Subspace Traversal inW+

First of all, note that we generally invert an image to a
vector w̃ in W+ space [20], which has 18 style vectors of
dimensionm. Unfortunately, (7) cannot be computed in this
case since z ∈ Z corresponding to w̃ is unknown. To ad-
dress this issue, let w1, w2, · · · , w18 be the style vectors,
each fed into different stages of the generator. Then w̃ is
written as

w̃ = (w1, w2, . . . , w18). (10)

For each vector wi, the corresponding zi = g(wi) is ob-
tained by optimizing a simple inversion MLP g with a loss
function given by

Linv(wi) = ‖f(g(wi))− wi‖22. (11)

Therefore, by letting z̃ = (z1, z2, . . . , z2) and f̃(z̃) =
(f(z1), f(z2), . . . , f(z18)), we gain

J̃ = ∂f̃/∂z̃. (12)

Regarding J̃ as the counterpart of J in (7), the remaining
part of the discussion is exactly the same as Section 3.2.

Now, let v be a global direction obtained by the method
introduced in Section 3.1. Also, let P be a k-dimensional
tangent space induced from J̃ . Then we adopt the most sim-
ilar orientation to the global direction among the basis vec-
tors, obtained through SVD. The chosen orientation can be
interpreted as the first principal component in the Principal
Component Analysis (PCA) at the local point. We empiri-
cally identify that this technique can manipulate a given im-
age, while preserving the image quality. (see Figure 3 and
Figure 4).

4.2. Diverse Manipulation

Here, we demonstrate how to achieve the high diversity
of results. Note that such discussion is essential since a sin-
gle attribute does not imply that it has only one direction.
Indeed, one can get older, or be angrier, or be cuter in vari-
ous ways. Therefore, with the subspace traversal suggested
in Section 4.1, we additionally suggest some techniques to
increase the diversity of manipulated images.

Random Step Size The first method is adjusting the step
size randomly for each iteration. As proposed in Section
4.1, the traversal path should be in the local k-subspace,
which is spanned by the selected basis. Thus, as the step
size varies randomly, the local basis induced by the latent
vector slightly changes, and this phenomenon can produce a
variety of progressive paths. For the implementation details
of randomness in the step size, see Section 5.1.

Overlapping each layer As mentioned in Section 4.1,
after inverting 18 blocks of each W+ into Z , the Jaco-
bian J(z) of the mapper network f for each block is com-
puted and its singular value decomposition yields a local
k-dimensional basis. Then, one element of basis with the
largest inner product value for the given global direction
is selected as the next direction of progress. However, the
chosen vectors are belonged to W so that the actual step
size interpreted in Z highly depends on the corresponding
singular values. To address this issue, one of the simplest
methods is moving the latent vector by the same unit dis-
tance in Z , not W or W+. Explicitly, we pull-back each
vector to TzZ and simply accumulate these vectors as the
to restrict into one TzZ space. Note that we add all these
vectors rather than concatenation. By such addition, the up-
date direction of each block inW+ overlaps each other, and
this method further stimulates to increase the variety of our
image manipulation results. Finally, we push forward the
tangent vector from TzZ to TwW+ with the randomized
step size, to generate a manipulated image.
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(a) (b)

(c) (d)

Figure 4. Comparison of StyleCLIP and our proposed method on a change of gender: (a) linear traversal along the opposite global direction
‘man’ from StyleCLIP, (b) iterative traversal along our local basis vector, which is the most similar to the opposite global direction ‘man’
from StyleCLIP, (c) linear traversal along the global direction ‘man’ from StyleCLIP, (d) iterative traversal along our local basis vector,
which is the most similar to the global direction ‘man’ from StyleCLIP. Note that the woman in the first row of (c) and (d) is from the last
row of the nineth column in (b).
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Algorithm 1 Stochastic Iterative Traversal
Input: A latent vector w ∈ W+ = Rm×18, a global direc-

tion v ∈ W+ corresponding to a text t, the subspace
dimension k ∈ [1, m], and the step size hyperparame-
ters a, b.

1: for iteration do
2: Find z corresponding to w
3: J(z)←

(
∂f/∂z

)
(z)

4: Obtain U , V from SVD of J(z) = UΣV T

5: i← arg max{|UT
1 v|, |UT

2 v|, . . . , |UT
k v|}

6: v′ ← sign
(
UT
i v
)
V T
i v

7: w ← w + λv′ where λ ∼ U[a,b]

8: end for
9: return G(w)

5. Experiments

5.1. Implementation Details

Finding a global direction We follow the implementa-
tion of [16], which is also explained in Section 3.1. The only
difference with [16] is that we experiment onW+, the latent
of StyleGAN, rather than StyleSpace S [22]. We used “old
person” for the target attribute and “person” for the neu-
tral class in manipulating age. Similarly, we apply “man”
for the target attribute and “a person” for the neutral class
in manipulating gender. Next, after the aggregation of 2824
latent codes w̃ ∈ W+, we calculated standard deviations of
every channels for perturbation. As Rc(∆i) is the expecta-
tion of dot product of ∆ic and ∆i (3), we can use the same
∆ic for different ∆i. If we computed ∆ic and save them
first, then we can reuse them for every time we calculate
Rc(∆i) for different ∆i which is the same as ∆t. So we
used 42 image pairs to compute 42 ∆ic and the mean of
them. The images are generated images from latent vectors
w̃ ± α∆w̃c, where ∆w̃s is a zero vector, except its c coor-
dinate set to the standard deviation of that channel we com-
puted above. Initially, we tried to use 100 image pairs, but it
seemed that it would take too long to have results. Therefore
we used the largest batch size available to us, which was
14, and iterated 3 times to get the mean values. These 42
latent codes were obtained from the collection, which has
inverted latent codes of CelebA-HQ. It took about 9 hours
to get 42 ∆ic for all 9216 channels. Once we have the mean
of ∆ic, we can simply get the relevance of channel c to the
target manipulation Rc(∆i) by dot product of the mean of
∆ic and ∆i. We set α = 5 and β = 0.14 initially, but if
the obtained global direction was too sparse, we lowered β
so that global direction had between 50 and 150 non-zero
channels. Specifically, we used β = 0.14 in manipulating
age, β = 0.09 in manipulating gender.

Stochastic Traversal Figure 3 (a) and (c) are obtained by
increasing the step size by 2. Figure 3 (b) changes the step
size uniformly at random from 0.05 to 0.20 with iteration
30. Figure 3 (d) changes the step size uniformly at random
from 0.10 to 0.25 with iteration 30. All images in Figure 3
(b) and (d) are drawn for every six iterations. Figure 4 (a)
and (c) are obtained by increasing the step size by 2. Figure
4 (b) changes the step size uniformly at random from 0.05
to 0.12 with iteration 30. Figure 4 (d) changes the step size
uniformly at random from 0.10 to 0.18 with iteration 30.
All images in Figure 4 (b) and (d) are drawn for every six
iterations.

5.2. Results

The results of the global direction and our method are
demonstrated in Figure 3 and Figure 4. Images shown in
Figure 3 (a) present manipulated image by the global direc-
tion of attribute of ‘aging’. (c) shows the result by travers-
ing in the opposite direction. The top image is the original
image, and the others are manipulated images with differ-
ent intensity (α). Similarly, Figure 4 (a) and (c) show the
manipulated results by the global directions, which each di-
rection stands attribute of ‘man’ and ‘woman’, respectively.
Moreover, (b) and (d) of these two figures demonstrate our
diverse outcome where (b) and (d) are counterpart of (a) and
(c) of each figures, respectively.

Quality As shown in Figure 2, if the step size α of the
global direction is large, the image collapses to unknown
shape. Furthermore, in Figure 3 (a) and (c), the modified
version of the attribute ‘elderly’ and ‘youthful’ look mal-
formed. Even Figure 4 (a) does not change the gender, indi-
cating another failure of the global direction. In contrast, we
observe that the image does not collapse even after many
iterations when using our proposed method. As shown in
Figure 3 and Figure 4, the stochastic iterative traversal has
the potential to keep the latent vector from leaving the im-
age manifold. In conclusion, the image manipulation task
was successful in terms of the image quality.

Diversity We show that with Figure 3 and Figure 4, var-
ious images can be retrieved in one attribute. Although the
global direction is the same, the manipulation results are
varied by restricting the direction to local image manifold
and randomizing step size. Obviously, tremendous changes
are demanded to manipulate age and gender, which forces
to go through a long journey. Shown in Figure 3 and Fig-
ure 4, while global direction method experience despair
throughout the journey, every pathways successfully con-
cludes their expedition in variety ways within our method.
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6. Conclusion

Many recent studies in facial image manipulation have
treated some coarse-level attributes, such as age and gender,
as if they were one-dimensional. Furthermore, their pro-
posed global directions often degrade the image quality, as
the intensity of manipulation increases. On the contrary, our
method enables a long, stable traversal by restricting the up-
date direction into a submanifold ofW+ induced from the
mapping network of StyleGAN. By comprehensive experi-
ments, we demonstrates our traversal does not escape from
the latent manifold and preserves the quality of manipulated
images. Also, we show that even the same attribute can yield
different results by adding randomness of the step size for
each iteration. Hence, our proposed methods allow us to ob-
tain much more diverse and high-quality facial images com-
pared to existing state-of-the-art manipulation models, such
as StyleCLIP.
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