
Disclaimer: This note was modified from cs231n lecture notes by Prof. Li Fei-Fei at Stanford University.

Table of Contents:

Babysitting the Learning Process

Loss function

Train/val accuracy

Ratio of weights:updates

Activation/Gradient distributions per layer

First-layer visualizations

Regularization (L2/L1/Maxnorm/Dropout)

Parameter Updates

First-order (SGD), momentum, Nesterov momentum

Annealing the learning rate

Second-order methods

Per-parameter adaptive learning rates (Adagrad, RMSProp)

Hyperparameter Optimization

Model Ensembles

Babysitting the Learning Process
There are multiple useful quantities you should monitor during training of a neural network. These plots are the

window into the training process and should be utilized to get intuitions about different hyperparameter settings

and how they should be changed for more efficient learning.

The x-axis of the plots below are always in units of epochs, which measure how many times every example has

been seen during training in expectation (e.g. one epoch means that every example has been seen once). It is

preferable to track epochs rather than iterations since the number of iterations depends on the arbitrary setting of

batch size.

Loss function

The first quantity that is useful to track during training is the loss, as it is evaluated on the individual batches during

the forward pass. Below is a cartoon diagram showing the loss over time, and especially what the shape might tell

you about the learning rate:

Lecture 6. Training neural networks II

Left: A cartoon depicting the effects of different learning rates. With low learning rates the improvements will be linear.

With high learning rates they will start to look more exponential. Higher learning rates will decay the loss faster, but they

get stuck at worse values of loss (green line). This is because there is too much "energy" in the optimization and the

parameters are bouncing around chaotically, unable to settle in a nice spot in the optimization landscape. Right: An

example of a typical loss function over time, while training a small network on CIFAR-10 dataset. This loss function looks

reasonable (it might indicate a slightly too small learning rate based on its speed of decay, but it's hard to say), and also

indicates that the batch size might be a little too low (since the cost is a little too noisy).

The amount of “wiggle” in the loss is related to the batch size. When the batch size is 1, the wiggle will be relatively

high. When the batch size is the full dataset, the wiggle will be minimal because every gradient update should be

improving the loss function monotonically (unless the learning rate is set too high).

Some people prefer to plot their loss functions in the log domain. Since learning progress generally takes an

exponential form shape, the plot appears as a slightly more interpretable straight line, rather than a hockey stick.

Additionally, if multiple cross-validated models are plotted on the same loss graph, the differences between them

become more apparent.

Sometimes loss functions can look funny lossfunctions.tumblr.com.

Train/Val accuracy

The second important quantity to track while training a classifier is the validation/training accuracy. This plot can

give you valuable insights into the amount of overfitting in your model:

The gap between the training and validation accuracy indicates the amount of

overfitting. Two possible cases are shown in the diagram on the left. The blue

validation error curve shows very small validation accuracy compared to the

training accuracy, indicating strong overfitting (note, it's possible for the

validation accuracy to even start to go down after some point). When you see

this in practice you probably want to increase regularization (stronger L2 weight

penalty, more dropout, etc.) or collect more data. The other possible case is

when the validation accuracy tracks the training accuracy fairly well. This case

indicates that your model capacity is not high enough: make the model larger

by increasing the number of parameters.

Ratio of weights:updates

The last quantity you might want to track is the ratio of the update magnitudes to the value magnitudes. Note:

updates, not the raw gradients (e.g. in vanilla sgd this would be the gradient multiplied by the learning rate). You

might want to evaluate and track this ratio for every set of parameters independently. A rough heuristic is that this

ratio should be somewhere around 1e-3. If it is lower than this then the learning rate might be too low. If it is

higher then the learning rate is likely too high. Here is a specific example:

assume parameter vector W and its gradient vector dW

param_scale = np.linalg.norm(W.ravel())

update = -learning_rate*dW # simple SGD update

update_scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update_scale / param_scale # want ~1e-3

Instead of tracking the min or the max, some people prefer to compute and track the norm of the gradients and

their updates instead. These metrics are usually correlated and often give approximately the same results.

http://lossfunctions.tumblr.com/

Activation / Gradient distributions per layer

An incorrect initialization can slow down or even completely stall the learning process. Luckily, this issue can be

diagnosed relatively easily. One way to do so is to plot activation/gradient histograms for all layers of the network.

Intuitively, it is not a good sign to see any strange distributions - e.g. with tanh neurons we would like to see a

distribution of neuron activations between the full range of [-1,1], instead of seeing all neurons outputting zero, or

all neurons being completely saturated at either -1 or 1.

First-layer Visualizations

Lastly, when one is working with image pixels it can be helpful and satisfying to plot the first-layer features visually:

Examples of visualized weights for the first layer of a neural network. Left: Noisy features indicate could be a symptom:

Unconverged network, improperly set learning rate, very low weight regularization penalty. Right: Nice, smooth, clean and

diverse features are a good indication that the training is proceeding well.

Regularization
There are several ways of controlling the capacity of Neural Networks to prevent overfitting:

L2 regularization is perhaps the most common form of regularization. It can be implemented by penalizing the

squared magnitude of all parameters directly in the objective. That is, for every weight in the network, we add

the term to the objective, where is the regularization strength. It is common to see the factor of in

front because then the gradient of this term with respect to the parameter is simply instead of . The L2

regularization has the intuitive interpretation of heavily penalizing peaky weight vectors and preferring diffuse

weight vectors. As we discussed in the Linear Classification section, due to multiplicative interactions between

weights and inputs this has the appealing property of encouraging the network to use all of its inputs a little rather

than some of its inputs a lot. Lastly, notice that during gradient descent parameter update, using the L2

regularization ultimately means that every weight is decayed linearly: W += -lambda * W towards zero.

L1 regularization is another relatively common form of regularization, where for each weight we add the term

 to the objective. It is possible to combine the L1 regularization with the L2 regularization:

(this is called Elastic net regularization). The L1 regularization has the intriguing property that it leads the weight

vectors to become sparse during optimization (i.e. very close to exactly zero). In other words, neurons with L1

regularization end up using only a sparse subset of their most important inputs and become nearly invariant to

the “noisy” inputs. In comparison, final weight vectors from L2 regularization are usually diffuse, small numbers. In

practice, if you are not concerned with explicit feature selection, L2 regularization can be expected to give superior

performance over L1.

Max norm constraints. Another form of regularization is to enforce an absolute upper bound on the magnitude

of the weight vector for every neuron and use projected gradient descent to enforce the constraint. In practice,

this corresponds to performing the parameter update as normal, and then enforcing the constraint by clamping

w

λ1
2

w2 λ 1
2

w λw 2λw

w

λ ∣ w∣ ∣ w ∣ +λ1 λ2 w2

http://web.stanford.edu/~hastie/Papers/B67.2%20%282005%29%20301-320%20Zou%20&%20Hastie.pdf

the weight vector of every neuron to satisfy . Typical values of are on orders of 3 or 4. Some

people report improvements when using this form of regularization. One of its appealing properties is that

network cannot “explode” even when the learning rates are set too high because the updates are always bounded.

Dropout is an extremely effective, simple and recently introduced regularization technique by Srivastava et al. in

Dropout: A Simple Way to Prevent Neural Networks from Overfitting (pdf) that complements the other methods

(L1, L2, maxnorm). While training, dropout is implemented by only keeping a neuron active with some probability

 (a hyperparameter), or setting it to zero otherwise.

Figure taken from the Dropout paper that illustrates the idea. During training, Dropout can be interpreted as sampling a

Neural Network within the full Neural Network, and only updating the parameters of the sampled network based on the

input data. (However, the exponential number of possible sampled networks are not independent because they share the

parameters.) During testing there is no dropout applied, with the interpretation of evaluating an averaged prediction across

the exponentially-sized ensemble of all sub-networks (more about ensembles in the next section).

Vanilla dropout in an example 3-layer Neural Network would be implemented as follows:

""" Vanilla Dropout: Not recommended implementation (see notes below) """

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):

 """ X contains the data """

 # forward pass for example 3-layer neural network

 H1 = np.maximum(0, np.dot(W1, X) + b1)

 U1 = np.random.rand(*H1.shape) < p # first dropout mask

 H1 *= U1 # drop!

 H2 = np.maximum(0, np.dot(W2, H1) + b2)

 U2 = np.random.rand(*H2.shape) < p # second dropout mask

 H2 *= U2 # drop!

 out = np.dot(W3, H2) + b3

 # backward pass: compute gradients... (not shown)

 # perform parameter update... (not shown)

def predict(X):

 # ensembled forward pass

 H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations

 H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations

 out = np.dot(W3, H2) + b3

In the code above, inside the train_step function we have performed dropout twice: on the first hidden layer

and on the second hidden layer. It is also possible to perform dropout right on the input layer, in which case we

w⃗ ∥ < cw⃗ ∥2 c

p

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf

would also create a binary mask for the input X . The backward pass remains unchanged, but of course has to

take into account the generated masks U1,U2 .

Crucially, note that in the predict function we are not dropping anymore, but we are performing a scaling of

both hidden layer outputs by . This is important because at test time all neurons see all their inputs, so we want

the outputs of neurons at test time to be identical to their expected outputs at training time. For example, in case

of , the neurons must halve their outputs at test time to have the same output as they had during training

time (in expectation). To see this, consider an output of a neuron (before dropout). With dropout, the expected

output from this neuron will become , because the neuron’s output will be set to zero with

probability . At test time, when we keep the neuron always active, we must adjust to keep the

same expected output. It can also be shown that performing this attenuation at test time can be related to the

process of iterating over all the possible binary masks (and therefore all the exponentially many sub-networks) and

computing their ensemble prediction.

The undesirable property of the scheme presented above is that we must scale the activations by at test time.

Since test-time performance is so critical, it is always preferable to use inverted dropout, which performs the

scaling at train time, leaving the forward pass at test time untouched. Additionally, this has the appealing property

that the prediction code can remain untouched when you decide to tweak where you apply dropout, or if at all.

Inverted dropout looks as follows:

"""

Inverted Dropout: Recommended implementation example.

We drop and scale at train time and don't do anything at test time.

"""

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):

 # forward pass for example 3-layer neural network

 H1 = np.maximum(0, np.dot(W1, X) + b1)

 U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!

 H1 *= U1 # drop!

 H2 = np.maximum(0, np.dot(W2, H1) + b2)

 U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!

 H2 *= U2 # drop!

 out = np.dot(W3, H2) + b3

 # backward pass: compute gradients... (not shown)

 # perform parameter update... (not shown)

def predict(X):

 # ensembled forward pass

 H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary

 H2 = np.maximum(0, np.dot(W2, H1) + b2)

 out = np.dot(W3, H2) + b3

There has a been a large amount of research after the first introduction of dropout that tries to understand the

source of its power in practice, and its relation to the other regularization techniques. Recommended further

reading for an interested reader includes:

Dropout paper by Srivastava et al. 2014.

Dropout Training as Adaptive Regularization: “we show that the dropout regularizer is first-order equivalent

to an L2 regularizer applied after scaling the features by an estimate of the inverse diagonal Fisher

information matrix”.

p

p = 0.5
x

px + (1 − p)0
1 − p x → px

p

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf
http://papers.nips.cc/paper/4882-dropout-training-as-adaptive-regularization.pdf

Theme of noise in forward pass. Dropout falls into a more general category of methods that introduce

stochastic behavior in the forward pass of the network. During testing, the noise is marginalized over analytically
(as is the case with dropout when multiplying by), or numerically (e.g. via sampling, by performing several

forward passes with different random decisions and then averaging over them). An example of other research in

this direction includes DropConnect, where a random set of weights is instead set to zero during forward pass. As

foreshadowing, Convolutional Neural Networks also take advantage of this theme with methods such as stochastic

pooling, fractional pooling, and data augmentation. We will go into details of these methods later.

Bias regularization. As we already mentioned in the Linear Classification section, it is not common to regularize

the bias parameters because they do not interact with the data through multiplicative interactions, and therefore

do not have the interpretation of controlling the influence of a data dimension on the final objective. However, in

practical applications (and with proper data preprocessing) regularizing the bias rarely leads to significantly worse

performance. This is likely because there are very few bias terms compared to all the weights, so the classifier can

“afford to” use the biases if it needs them to obtain a better data loss.

Per-layer regularization. It is not very common to regularize different layers to different amounts (except

perhaps the output layer). Relatively few results regarding this idea have been published in the literature.

In practice: It is most common to use a single, global L2 regularization strength that is cross-validated. It is also

common to combine this with dropout applied after all layers. The value of is a reasonable default, but

this can be tuned on validation data.

Parameter Updates
Once the analytic gradient is computed with backpropagation, the gradients are used to perform a parameter

update. There are several approaches for performing the update, which we discuss next.

We note that optimization for deep networks is currently a very active area of research. In this section we highlight

some established and common techniques you may see in practice, briefly describe their intuition, but leave a

detailed analysis outside of the scope of the class. We provide some further pointers for an interested reader.

SGD and bells and whistles

Vanilla update. The simplest form of update is to change the parameters along the negative gradient direction

(since the gradient indicates the direction of increase, but we usually wish to minimize a loss function). Assuming a

vector of parameters x and the gradient dx , the simplest update has the form:

Vanilla update

x += - learning_rate * dx

where learning_rate is a hyperparameter - a fixed constant. When evaluated on the full dataset, and when

the learning rate is low enough, this is guaranteed to make non-negative progress on the loss function.

Momentum update is another approach that almost always enjoys better converge rates on deep networks. This

update can be motivated from a physical perspective of the optimization problem. In particular, the loss can be

interpreted as the height of a hilly terrain (and therefore also to the potential energy since and

therefore). Initializing the parameters with random numbers is equivalent to setting a particle with zero

initial velocity at some location. The optimization process can then be seen as equivalent to the process of

simulating the parameter vector (i.e. a particle) as rolling on the landscape.

Since the force on the particle is related to the gradient of potential energy (i.e.), the force felt by

the particle is precisely the (negative) gradient of the loss function. Moreover, so the (negative)

gradient is in this view proportional to the acceleration of the particle. Note that this is different from the SGD

p

p = 0.5

U = mgh

U ∝ h

F = −∇U

F = ma

http://cs.nyu.edu/~wanli/dropc/

update shown above, where the gradient directly integrates the position. Instead, the physics view suggests an

update in which the gradient only directly influences the velocity, which in turn has an effect on the position:

Momentum update

v = mu * v - learning_rate * dx # integrate velocity

x += v # integrate position

Here we see an introduction of a v variable that is initialized at zero, and an additional hyperparameter (mu). As

an unfortunate misnomer, this variable is in optimization referred to as momentum (its typical value is about 0.9),

but its physical meaning is more consistent with the coefficient of friction. Effectively, this variable damps the

velocity and reduces the kinetic energy of the system, or otherwise the particle would never come to a stop at the

bottom of a hill. When cross-validated, this parameter is usually set to values such as [0.5, 0.9, 0.95, 0.99]. Similar

to annealing schedules for learning rates (discussed later, below), optimization can sometimes benefit a little from

momentum schedules, where the momentum is increased in later stages of learning. A typical setting is to start

with momentum of about 0.5 and anneal it to 0.99 or so over multiple epochs.

Nesterov Momentum is a slightly different version of the momentum update that has recently been gaining

popularity. It enjoys stronger theoretical converge guarantees for convex functions and in practice it also

consistenly works slightly better than standard momentum.

The core idea behind Nesterov momentum is that when the current parameter vector is at some position x , then

looking at the momentum update above, we know that the momentum term alone (i.e. ignoring the second term

with the gradient) is about to nudge the parameter vector by mu * v . Therefore, if we are about to compute the

gradient, we can treat the future approximate position x + mu * v as a “lookahead” - this is a point in the

vicinity of where we are soon going to end up. Hence, it makes sense to compute the gradient at x + mu * v

instead of at the “old/stale” position x .

Nesterov momentum. Instead of evaluating gradient at the current position (red circle), we know that our momentum is

about to carry us to the tip of the green arrow. With Nesterov momentum we therefore instead evaluate the gradient at

this "looked-ahead" position.

That is, in a slightly awkward notation, we would like to do the following:

x_ahead = x + mu * v

evaluate dx_ahead (the gradient at x_ahead instead of at x)

v = mu * v - learning_rate * dx_ahead

x += v

However, in practice people prefer to express the update to look as similar to vanilla SGD or to the previous

momentum update as possible. This is possible to achieve by manipulating the update above with a variable

transform x_ahead = x + mu * v , and then expressing the update in terms of x_ahead instead of x . That

With Momentum update, the parameter vector will build up velocity in any direction that has consistent gradient.

is, the parameter vector we are actually storing is always the ahead version. The equations in terms of x_ahead

(but renaming it back to x) then become:

v_prev = v # back this up

v = mu * v - learning_rate * dx # velocity update stays the same

x += -mu * v_prev + (1 + mu) * v # position update changes form

We recommend this further reading to understand the source of these equations and the mathematical

formulation of Nesterov’s Accelerated Momentum (NAG):

Advances in optimizing Recurrent Networks by Yoshua Bengio, Section 3.5.

Ilya Sutskever’s thesis (pdf) contains a longer exposition of the topic in section 7.2

Annealing the learning rate

In training deep networks, it is usually helpful to anneal the learning rate over time. Good intuition to have in mind

is that with a high learning rate, the system contains too much kinetic energy and the parameter vector bounces

around chaotically, unable to settle down into deeper, but narrower parts of the loss function. Knowing when to

decay the learning rate can be tricky: Decay it slowly and you’ll be wasting computation bouncing around

chaotically with little improvement for a long time. But decay it too aggressively and the system will cool too

quickly, unable to reach the best position it can. There are three common types of implementing the learning rate

decay:

Step decay: Reduce the learning rate by some factor every few epochs. Typical values might be reducing

the learning rate by a half every 5 epochs, or by 0.1 every 20 epochs. These numbers depend heavily on the

type of problem and the model. One heuristic you may see in practice is to watch the validation error while

training with a fixed learning rate, and reduce the learning rate by a constant (e.g. 0.5) whenever the

validation error stops improving.

Exponential decay. has the mathematical form , where are hyperparameters and is

the iteration number (but you can also use units of epochs).

1/t decay has the mathematical form where are hyperparameters and is the

iteration number.

In practice, we find that the step decay is slightly preferable because the hyperparameters it involves (the fraction

of decay and the step timings in units of epochs) are more interpretable than the hyperparameter . Lastly, if you

can afford the computational budget, err on the side of slower decay and train for a longer time.

Second order methods

A second, popular group of methods for optimization in context of deep learning is based on Newton’s method,

which iterates the following update:

Here, is the Hessian matrix, which is a square matrix of second-order partial derivatives of the function.

The term is the gradient vector, as seen in Gradient Descent. Intuitively, the Hessian describes the local

curvature of the loss function, which allows us to perform a more efficient update. In particular, multiplying by the

inverse Hessian leads the optimization to take more aggressive steps in directions of shallow curvature and shorter

steps in directions of steep curvature. Note, crucially, the absence of any learning rate hyperparameters in the

update formula, which the proponents of these methods cite this as a large advantage over first-order methods.

However, the update above is impractical for most deep learning applications because computing (and inverting)

the Hessian in its explicit form is a very costly process in both space and time. For instance, a Neural Network with

α = α0 e−kt , kα0 t

α = /(1 + kt)α0 , ka0 t

k

x ← x − [Hf(x) ∇f(x)]−1

Hf(x)
∇f(x)

http://arxiv.org/pdf/1212.0901v2.pdf
http://www.cs.utoronto.ca/~ilya/pubs/ilya_sutskever_phd_thesis.pdf
http://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
http://en.wikipedia.org/wiki/Hessian_matrix

one million parameters would have a Hessian matrix of size [1,000,000 x 1,000,000], occupying approximately 3725

gigabytes of RAM. Hence, a large variety of quasi-Newton methods have been developed that seek to

approximate the inverse Hessian. Among these, the most popular is L-BFGS, which uses the information in the

gradients over time to form the approximation implicitly (i.e. the full matrix is never computed).

However, even after we eliminate the memory concerns, a large downside of a naive application of L-BFGS is that

it must be computed over the entire training set, which could contain millions of examples. Unlike mini-batch SGD,

getting L-BFGS to work on mini-batches is more tricky and an active area of research.

In practice, it is currently not common to see L-BFGS or similar second-order methods applied to large-scale

Deep Learning and Convolutional Neural Networks. Instead, SGD variants based on (Nesterov’s) momentum are

more standard because they are simpler and scale more easily.

Additional references:

Large Scale Distributed Deep Networks is a paper from the Google Brain team, comparing L-BFGS and SGD

variants in large-scale distributed optimization.

SFO algorithm strives to combine the advantages of SGD with advantages of L-BFGS.

Per-parameter adaptive learning rate methods

All previous approaches we’ve discussed so far manipulated the learning rate globally and equally for all

parameters. Tuning the learning rates is an expensive process, so much work has gone into devising methods that

can adaptively tune the learning rates, and even do so per parameter. Many of these methods may still require

other hyperparameter settings, but the argument is that they are well-behaved for a broader range of

hyperparameter values than the raw learning rate. In this section we highlight some common adaptive methods

you may encounter in practice:

Adagrad is an adaptive learning rate method originally proposed by Duchi et al..

Assume the gradient dx and parameter vector x

cache += dx**2

x += - learning_rate * dx / (np.sqrt(cache) + eps)

Notice that the variable cache has size equal to the size of the gradient, and keeps track of per-parameter sum

of squared gradients. This is then used to normalize the parameter update step, element-wise. Notice that the

weights that receive high gradients will have their effective learning rate reduced, while weights that receive small

or infrequent updates will have their effective learning rate increased. Amusingly, the square root operation turns

out to be very important and without it the algorithm performs much worse. The smoothing term eps (usually

set somewhere in range from 1e-4 to 1e-8) avoids division by zero. A downside of Adagrad is that in case of Deep

Learning, the monotonic learning rate usually proves too aggressive and stops learning too early.

RMSprop. RMSprop is a very effective, but currently unpublished adaptive learning rate method. Amusingly,

everyone who uses this method in their work currently cites slide 29 of Lecture 6 of Geoff Hinton’s Coursera class.

The RMSProp update adjusts the Adagrad method in a very simple way in an attempt to reduce its aggressive,

monotonically decreasing learning rate. In particular, it uses a moving average of squared gradients instead,

giving:

cache = decay_rate * cache + (1 - decay_rate) * dx**2

x += - learning_rate * dx / (np.sqrt(cache) + eps)

Here, decay_rate is a hyperparameter and typical values are [0.9, 0.99, 0.999]. Notice that the x+= update is

identical to Adagrad, but the cache variable is a “leaky”. Hence, RMSProp still modulates the learning rate of

http://en.wikipedia.org/wiki/Limited-memory_BFGS
http://research.google.com/archive/large_deep_networks_nips2012.html
http://arxiv.org/abs/1311.2115
http://jmlr.org/papers/v12/duchi11a.html
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

each weight based on the magnitudes of its gradients, which has a beneficial equalizing effect, but unlike Adagrad

the updates do not get monotonically smaller.

Adam. Adam is a recently proposed update that looks a bit like RMSProp with momentum. The (simplified) update

looks as follows:

m = beta1*m + (1-beta1)*dx

v = beta2*v + (1-beta2)*(dx**2)

x += - learning_rate * m / (np.sqrt(v) + eps)

Notice that the update looks exactly as RMSProp update, except the “smooth” version of the gradient m is used

instead of the raw (and perhaps noisy) gradient vector dx . Recommended values in the paper are eps = 1e-

8 , beta1 = 0.9 , beta2 = 0.999 . In practice Adam is currently recommended as the default algorithm to

use, and often works slightly better than RMSProp. However, it is often also worth trying SGD+Nesterov

Momentum as an alternative. The full Adam update also includes a bias correction mechanism, which

compensates for the fact that in the first few time steps the vectors m,v are both initialized and therefore biased

at zero, before they fully “warm up”. With the bias correction mechanism, the update looks as follows:

t is your iteration counter going from 1 to infinity

m = beta1*m + (1-beta1)*dx

mt = m / (1-beta1**t)

v = beta2*v + (1-beta2)*(dx**2)

vt = v / (1-beta2**t)

x += - learning_rate * mt / (np.sqrt(vt) + eps)

Note that the update is now a function of the iteration as well as the other parameters.
We refer the reader to the

paper for the details, or the course slides where this is expanded on.

Additional References:

Unit Tests for Stochastic Optimization proposes a series of tests as a standardized benchmark for stochastic

optimization.

Animations that may help your intuitions about the learning process dynamics. Left: Contours of a loss surface and time

evolution of different optimization algorithms. Notice the "overshooting" behavior of momentum-based methods, which

make the optimization look like a ball rolling down the hill. Right: A visualization of a saddle point in the optimization

landscape, where the curvature along different dimension has different signs (one dimension curves up and another down).

Notice that SGD has a very hard time breaking symmetry and gets stuck on the top. Conversely, algorithms such as

RMSprop will see very low gradients in the saddle direction. Due to the denominator term in the RMSprop update, this will

increase the effective learning rate along this direction, helping RMSProp proceed. Images credit: Alec Radford.

Hyperparameter Optimization

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6055
https://twitter.com/alecrad

As we've seen, training Neural Networks can involve many hyperparameter settings. The most common

hyperparameters in context of Neural Networks include:

the initial learning rate

learning rate decay schedule (such as the decay constant)

regularization strength (L2 penalty, dropout strength)

But as we saw, there are many more relatively less sensitive hyperparameters, for example in per-parameter

adaptive learning methods, the setting of momentum and its schedule, etc. In this section we describe some

additional tips and tricks for performing the hyperparameter search:

Implementation. Larger Neural Networks typically require a long time to train, so performing hyperparameter

search can take many days/weeks. It is important to keep this in mind since it influences the design of your code

base. One particular design is to have a worker that continuously samples random hyperparameters and performs

the optimization. During the training, the worker will keep track of the validation performance after every epoch,

and writes a model checkpoint (together with miscellaneous training statistics such as the loss over time) to a file,

preferably on a shared file system. It is useful to include the validation performance directly in the filename, so that

it is simple to inspect and sort the progress. Then there is a second program which we will call a master, which

launches or kills workers across a computing cluster, and may additionally inspect the checkpoints written by

workers and plot their training statistics, etc.

Prefer one validation fold to cross-validation. In most cases a single validation set of respectable size

substantially simplifies the code base, without the need for cross-validation with multiple folds. You’ll hear people

say they “cross-validated” a parameter, but many times it is assumed that they still only used a single validation

set.

Hyperparameter ranges. Search for hyperparameters on log scale. For example, a typical sampling of the

learning rate would look as follows: learning_rate = 10 ** uniform(-6, 1) . That is, we are generating a

random number from a uniform distribution, but then raising it to the power of 10. The same strategy should be

used for the regularization strength. Intuitively, this is because learning rate and regularization strength have

multiplicative effects on the training dynamics. For example, a fixed change of adding 0.01 to a learning rate has

huge effects on the dynamics if the learning rate is 0.001, but nearly no effect if the learning rate when it is 10. This

is because the learning rate multiplies the computed gradient in the update. Therefore, it is much more natural to

consider a range of learning rate multiplied or divided by some value, than a range of learning rate added or

subtracted to by some value. Some parameters (e.g. dropout) are instead usually searched in the original scale

(e.g. dropout = uniform(0,1)).

Prefer random search to grid search. As argued by Bergstra and Bengio in Random Search for Hyper-

Parameter Optimization, “randomly chosen trials are more efficient for hyper-parameter optimization than trials

on a grid”. As it turns out, this is also usually easier to implement.

Core illustration from Random Search for Hyper-Parameter Optimization by Bergstra and Bengio. It is very often the case

that some of the hyperparameters matter much more than others (e.g. top hyperparam vs. left one in this figure).

Performing random search rather than grid search allows you to much more precisely discover good values for the

important ones.

http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf

Careful with best values on border. Sometimes it can happen that you’re searching for a hyperparameter (e.g.

learning rate) in a bad range. For example, suppose we use learning_rate = 10 ** uniform(-6, 1) . Once

we receive the results, it is important to double check that the final learning rate is not at the edge of this interval,

or otherwise you may be missing more optimal hyperparameter setting beyond the interval.

Stage your search from coarse to fine. In practice, it can be helpful to first search in coarse ranges (e.g. 10 **

[-6, 1]), and then depending on where the best results are turning up, narrow the range. Also, it can be helpful to

perform the initial coarse search while only training for 1 epoch or even less, because many hyperparameter

settings can lead the model to not learn at all, or immediately explode with infinite cost. The second stage could

then perform a narrower search with 5 epochs, and the last stage could perform a detailed search in the final

range for many more epochs (for example).

Bayesian Hyperparameter Optimization is a whole area of research devoted to coming up with algorithms that

try to more efficiently navigate the space of hyperparameters. The core idea is to appropriately balance the

exploration - exploitation trade-off when querying the performance at different hyperparameters. Multiple

libraries have been developed based on these models as well, among some of the better known ones are

Spearmint, SMAC, and Hyperopt. However, in practical settings with ConvNets it is still relatively difficult to beat

random search in a carefully-chosen intervals. See some additional from-the-trenches discussion here.

Model Ensembles
In practice, one reliable approach to improving the performance of Neural Networks by a few percent is to train

multiple independent models, and at test time average their predictions. As the number of models in the

ensemble increases, the performance typically monotonically improves (though with diminishing returns).

Moreover, the improvements are more dramatic with higher model variety in the ensemble. There are a few

approaches to forming an ensemble:

Same model, different initializations. Use cross-validation to determine the best hyperparameters, then

train multiple models with the best set of hyperparameters but with different random initialization. The

danger with this approach is that the variety is only due to initialization.

Top models discovered during cross-validation. Use cross-validation to determine the best

hyperparameters, then pick the top few (e.g. 10) models to form the ensemble. This improves the variety of

the ensemble but has the danger of including suboptimal models. In practice, this can be easier to perform

since it doesn’t require additional retraining of models after cross-validation

Different checkpoints of a single model. If training is very expensive, some people have had limited

success in taking different checkpoints of a single network over time (for example after every epoch) and

using those to form an ensemble. Clearly, this suffers from some lack of variety, but can still work reasonably

well in practice. The advantage of this approach is that is very cheap.

Running average of parameters during training. Related to the last point, a cheap way of almost always

getting an extra percent or two of performance is to maintain a second copy of the network’s weights in

memory that maintains an exponentially decaying sum of previous weights during training. This way you’re

averaging the state of the network over last several iterations. You will find that this “smoothed” version of

the weights over last few steps almost always achieves better validation error. The rough intuition to have in

mind is that the objective is bowl-shaped and your network is jumping around the mode, so the average has

a higher chance of being somewhere nearer the mode.

One disadvantage of model ensembles is that they take longer to evaluate on test example. An interested reader

may find the recent work from Geoff Hinton on “Dark Knowledge” inspiring, where the idea is to “distill” a good

ensemble back to a single model by incorporating the ensemble log likelihoods into a modified objective.

https://github.com/JasperSnoek/spearmint
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
http://jaberg.github.io/hyperopt/
http://nlpers.blogspot.com/2014/10/hyperparameter-search-bayesian.html
https://www.youtube.com/watch?v=EK61htlw8hY

