
Disclaimer: This note was modified from cs231n lecture notes by Prof. Li Fei-Fei at Stanford University.

Table of Contents:

Architecture Overview

ConvNet Layers

Convolutional Layer

Pooling Layer

Normalization Layer

Fully-Connected Layer

Converting Fully-Connected Layers to Convolutional Layers

Convolutional Neural Networks (CNNs / ConvNets)
Convolutional Neural Networks are very similar to ordinary Neural Networks from the previous chapter: they are

made up of neurons that have learnable weights and biases. Each neuron receives some inputs, performs a dot

product and optionally follows it with a non-linearity. The whole network still expresses a single differentiable score

function: from the raw image pixels on one end to class scores at the other. And they still have a loss function (e.g.

SVM/Softmax) on the last (fully-connected) layer and all the tips/tricks we developed for learning regular Neural

Networks still apply.

So what changes? ConvNet architectures make the explicit assumption that the inputs are images, which allows us

to encode certain properties into the architecture. These then make the forward function more efficient to

implement and vastly reduce the amount of parameters in the network.

Architecture Overview

Recall: Regular Neural Nets. As we saw in the previous chapter, Neural Networks receive an input (a single vector),

and transform it through a series of hidden layers. Each hidden layer is made up of a set of neurons, where each

neuron is fully connected to all neurons in the previous layer, and where neurons in a single layer function

completely independently and do not share any connections. The last fully-connected layer is called the “output

layer” and in classification settings it represents the class scores.

Regular Neural Nets don’t scale well to full images. In CIFAR-10, images are only of size 32x32x3 (32 wide, 32 high,

3 color channels), so a single fully-connected neuron in a first hidden layer of a regular Neural Network would

have 32*32*3 = 3072 weights. This amount still seems manageable, but clearly this fully-connected structure does

not scale to larger images. For example, an image of more respectable size, e.g. 200x200x3, would lead to

neurons that have 200*200*3 = 120,000 weights. Moreover, we would almost certainly want to have several such

neurons, so the parameters would add up quickly! Clearly, this full connectivity is wasteful and the huge number of

parameters would quickly lead to overfitting.

3D volumes of neurons. Convolutional Neural Networks take advantage of the fact that the input consists of

images and they constrain the architecture in a more sensible way. In particular, unlike a regular Neural Network,

the layers of a ConvNet have neurons arranged in 3 dimensions: width, height, depth. (Note that the word

depth here refers to the third dimension of an activation volume, not to the depth of a full Neural Network, which

can refer to the total number of layers in a network.) For example, the input images in CIFAR-10 are an input

volume of activations, and the volume has dimensions 32x32x3 (width, height, depth respectively). As we will soon

Lecture 4. Convolutional Neural Networks

file:///C:/Users/joonseok/Desktop/MLDL%20Notes/Note_04.html

see, the neurons in a layer will only be connected to a small region of the layer before it, instead of all of the

neurons in a fully-connected manner. Moreover, the final output layer would for CIFAR-10 have dimensions 1x1x10,

because by the end of the ConvNet architecture we will reduce the full image into a single vector of class scores,

arranged along the depth dimension. Here is a visualization:

Left: A regular 3-layer Neural Network. Right: A ConvNet arranges its neurons in three dimensions (width, height, depth),

as visualized in one of the layers. Every layer of a ConvNet transforms the 3D input volume to a 3D output volume of

neuron activations. In this example, the red input layer holds the image, so its width and height would be the dimensions

of the image, and the depth would be 3 (Red, Green, Blue channels).

Layers used to build ConvNets

As we described above, a simple ConvNet is a sequence of layers, and every layer of a ConvNet transforms one

volume of activations to another through a differentiable function. We use three main types of layers to build

ConvNet architectures: Convolutional Layer, Pooling Layer, and Fully-Connected Layer (exactly as seen in

regular Neural Networks). We will stack these layers to form a full ConvNet architecture.

Example Architecture: Overview. We will go into more details below, but a simple ConvNet for CIFAR-10

classification could have the architecture [INPUT - CONV - RELU - POOL - FC]. In more detail:

INPUT [32x32x3] will hold the raw pixel values of the image, in this case an image of width 32, height 32,

and with three color channels R,G,B.

CONV layer will compute the output of neurons that are connected to local regions in the input, each

computing a dot product between their weights and a small region they are connected to in the input

volume. This may result in volume such as [32x32x12] if we decided to use 12 filters.

RELU layer will apply an elementwise activation function, such as the thresholding at zero. This

leaves the size of the volume unchanged ([32x32x12]).

POOL layer will perform a downsampling operation along the spatial dimensions (width, height), resulting in

volume such as [16x16x12].

FC (i.e. fully-connected) layer will compute the class scores, resulting in volume of size [1x1x10], where each

of the 10 numbers correspond to a class score, such as among the 10 categories of CIFAR-10. As with

ordinary Neural Networks and as the name implies, each neuron in this layer will be connected to all the

numbers in the previous volume.

In this way, ConvNets transform the original image layer by layer from the original pixel values to the final class

scores. Note that some layers contain parameters and other don’t. In particular, the CONV/FC layers perform

transformations that are a function of not only the activations in the input volume, but also of the parameters (the

weights and biases of the neurons). On the other hand, the RELU/POOL layers will implement a fixed function. The

parameters in the CONV/FC layers will be trained with gradient descent so that the class scores that the ConvNet

computes are consistent with the labels in the training set for each image.

In summary:

A ConvNet is made up of Layers. Every Layer has a simple API: It transforms an input 3D volume to an output 3D
volume with some differentiable function that may or may not have parameters.

max(0,x)

A ConvNet architecture is in the simplest case a list of Layers that transform the image volume into an

output volume (e.g. holding the class scores)

There are a few distinct types of Layers (e.g. CONV/FC/RELU/POOL are by far the most popular)

Each Layer accepts an input 3D volume and transforms it to an output 3D volume through a differentiable

function

Each Layer may or may not have parameters (e.g. CONV/FC do, RELU/POOL don’t)

Each Layer may or may not have additional hyperparameters (e.g. CONV/FC/POOL do, RELU doesn’t)

The activations of an example ConvNet architecture. The initial volume stores the raw image pixels (left) and the last

volume stores the class scores (right). Each volume of activations along the processing path is shown as a column. Since it's

difficult to visualize 3D volumes, we lay out each volume's slices in rows. The last layer volume holds the scores for each

class, but here we only visualize the sorted top 5 scores, and print the labels of each one. The full web-based demo is

shown in the header of our website. The architecture shown here is a tiny VGG Net, which we will discuss later.

We now describe the individual layers and the details of their hyperparameters and their connectivities.

Convolutional Layer

The Conv layer is the core building block of a Convolutional Network that does most of the computational heavy

lifting.

Overview and intuition without brain stuff. Let’s first discuss what the CONV layer computes without

brain/neuron analogies. The CONV layer’s parameters consist of a set of learnable filters. Every filter is small

spatially (along width and height), but extends through the full depth of the input volume. For example, a typical

filter on a first layer of a ConvNet might have size 5x5x3 (i.e. 5 pixels width and height, and 3 because images have

depth 3, the color channels). During the forward pass, we slide (more precisely, convolve) each filter across the

width and height of the input volume and compute dot products between the entries of the filter and the input at

any position. As we slide the filter over the width and height of the input volume we will produce a 2-dimensional

activation map that gives the responses of that filter at every spatial position. Intuitively, the network will learn

filters that activate when they see some type of visual feature such as an edge of some orientation or a blotch of

some color on the first layer, or eventually entire honeycomb or wheel-like patterns on higher layers of the

network. Now, we will have an entire set of filters in each CONV layer (e.g. 12 filters), and each of them will

produce a separate 2-dimensional activation map. We will stack these activation maps along the depth dimension

and produce the output volume.

The brain view. If you’re a fan of the brain/neuron analogies, every entry in the 3D output volume can also be

interpreted as an output of a neuron that looks at only a small region in the input and shares parameters with all

http://cs231n.stanford.edu/

neurons to the left and right spatially (since these numbers all result from applying the same filter). We now

discuss the details of the neuron connectivities, their arrangement in space, and their parameter sharing scheme.

Local Connectivity. When dealing with high-dimensional inputs such as images, as we saw above it is impractical

to connect neurons to all neurons in the previous volume. Instead, we will connect each neuron to only a local

region of the input volume. The spatial extent of this connectivity is a hyperparameter called the receptive field of

the neuron (equivalently this is the filter size). The extent of the connectivity along the depth axis is always equal to

the depth of the input volume. It is important to emphasize again this asymmetry in how we treat the spatial

dimensions (width and height) and the depth dimension: The connections are local in space (along width and

height), but always full along the entire depth of the input volume.

Example 1. For example, suppose that the input volume has size [32x32x3], (e.g. an RGB CIFAR-10 image). If the

receptive field (or the filter size) is 5x5, then each neuron in the Conv Layer will have weights to a [5x5x3] region in

the input volume, for a total of 5*5*3 = 75 weights (and +1 bias parameter). Notice that the extent of the

connectivity along the depth axis must be 3, since this is the depth of the input volume.

Example 2. Suppose an input volume had size [16x16x20]. Then using an example receptive field size of 3x3, every

neuron in the Conv Layer would now have a total of 3*3*20 = 180 connections to the input volume. Notice that,

again, the connectivity is local in space (e.g. 3x3), but full along the input depth (20).

Left: An example input volume in red (e.g. a 32x32x3 CIFAR-10 image), and an example volume of neurons in the first

Convolutional layer. Each neuron in the convolutional layer is connected only to a local region in the input volume spatially,

but to the full depth (i.e. all color channels). Note, there are multiple neurons (5 in this example) along the depth, all

looking at the same region in the input - see discussion of depth columns in text below. Right: The neurons from the

Neural Network chapter remain unchanged: They still compute a dot product of their weights with the input followed by a

non-linearity, but their connectivity is now restricted to be local spatially.

Spatial arrangement. We have explained the connectivity of each neuron in the Conv Layer to the input volume,

but we haven’t yet discussed how many neurons there are in the output volume or how they are arranged. Three

hyperparameters control the size of the output volume: the depth, stride and zero-padding. We discuss these

next:

1. First, the depth of the output volume is a hyperparameter: it corresponds to the number of filters we would

like to use, each learning to look for something different in the input. For example, if the first Convolutional

Layer takes as input the raw image, then different neurons along the depth dimension may activate in

presence of various oriented edges, or blobs of color. We will refer to a set of neurons that are all looking at

the same region of the input as a depth column (some people also prefer the term fibre).

2. Second, we must specify the stride with which we slide the filter. When the stride is 1 then we move the

filters one pixel at a time. When the stride is 2 (or uncommonly 3 or more, though this is rare in practice)

then the filters jump 2 pixels at a time as we slide them around. This will produce smaller output volumes

spatially.

3. As we will soon see, sometimes it will be convenient to pad the input volume with zeros around the border.

The size of this zero-padding is a hyperparameter. The nice feature of zero padding is that it will allow us to

control the spatial size of the output volumes (most commonly as we’ll see soon we will use it to exactly

preserve the spatial size of the input volume so the input and output width and height are the same).

We can compute the spatial size of the output volume as a function of the input volume size (), the receptive

field size of the Conv Layer neurons (), the stride with which they are applied (), and the amount of zero

padding used () on the border. You can convince yourself that the correct formula for calculating how many

neurons “fit” is given by . For example for a 7x7 input and a 3x3 filter with stride 1 and

pad 0 we would get a 5x5 output. With stride 2 we would get a 3x3 output. Lets also see one more graphical

example:

Illustration of spatial arrangement. In this example there is only one spatial dimension (x-axis), one neuron with a receptive

field size of F = 3, the input size is W = 5, and there is zero padding of P = 1. Left: The neuron strided across the input in

stride of S = 1, giving output of size (5 - 3 + 2)/1+1 = 5. Right: The neuron uses stride of S = 2, giving output of size (5 -

3 + 2)/2+1 = 3. Notice that stride S = 3 could not be used since it wouldn't fit neatly across the volume. In terms of the

equation, this can be determined since (5 - 3 + 2) = 4 is not divisible by 3.

The neuron weights are in this example [1,0,-1] (shown on very right), and its bias is zero. These weights are shared across

all yellow neurons (see parameter sharing below).

Use of zero-padding. In the example above on left, note that the input dimension was 5 and the output

dimension was equal: also 5. This worked out so because our receptive fields were 3 and we used zero padding of

1. If there was no zero-padding used, then the output volume would have had spatial dimension of only 3,

because that is how many neurons would have “fit” across the original input. In general, setting zero padding to

be when the stride is ensures that the input volume and output volume will have the

same size spatially. It is very common to use zero-padding in this way and we will discuss the full reasons when we

talk more about ConvNet architectures.

Constraints on strides. Note again that the spatial arrangement hyperparameters have mutual constraints. For

example, when the input has size , no zero-padding is used , and the filter size is , then it

would be impossible to use stride , since , i.e. not

an integer, indicating that the neurons don’t “fit” neatly and symmetrically across the input. Therefore, this setting

of the hyperparameters is considered to be invalid, and a ConvNet library could throw an exception or zero pad

the rest to make it fit, or crop the input to make it fit, or something. As we will see in the ConvNet architectures

section, sizing the ConvNets appropriately so that all the dimensions “work out” can be a real headache, which the

use of zero-padding and some design guidelines will significantly alleviate.

Real-world example. The Krizhevsky et al. architecture that won the ImageNet challenge in 2012 accepted images

of size [227x227x3]. On the first Convolutional Layer, it used neurons with receptive field size , stride

 and no zero padding . Since (227 - 11)/4 + 1 = 55, and since the Conv layer had a depth of

, the Conv layer output volume had size [55x55x96]. Each of the 55*55*96 neurons in this volume was

connected to a region of size [11x11x3] in the input volume. Moreover, all 96 neurons in each depth column are

connected to the same [11x11x3] region of the input, but of course with different weights. As a fun aside, if you

read the actual paper it claims that the input images were 224x224, which is surely incorrect because (224 - 11)/4

+ 1 is quite clearly not an integer. This has confused many people in the history of ConvNets and little is known

about what happened. My own best guess is that Alex used zero-padding of 3 extra pixels that he does not

mention in the paper.

W

F S

P

(W − F + 2P)/S + 1

P = (F − 1)/2 S = 1

W = 10 P = 0 F = 3
S = 2 (W − F + 2P)/S + 1 = (10 − 3 + 0)/2 + 1 = 4.5

F = 11
S = 4 P = 0
K = 96

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

Parameter Sharing. Parameter sharing scheme is used in Convolutional Layers to control the number of

parameters. Using the real-world example above, we see that there are 55*55*96 = 290,400 neurons in the first

Conv Layer, and each has 11*11*3 = 363 weights and 1 bias. Together, this adds up to 290400 * 364 = 105,705,600

parameters on the first layer of the ConvNet alone. Clearly, this number is very high.

It turns out that we can dramatically reduce the number of parameters by making one reasonable assumption:

That if one feature is useful to compute at some spatial position (x,y), then it should also be useful to compute at a

different position (x2,y2). In other words, denoting a single 2-dimensional slice of depth as a depth slice (e.g. a

volume of size [55x55x96] has 96 depth slices, each of size [55x55]), we are going to constrain the neurons in each

depth slice to use the same weights and bias. With this parameter sharing scheme, the first Conv Layer in our

example would now have only 96 unique set of weights (one for each depth slice), for a total of 96*11*11*3 =

34,848 unique weights, or 34,944 parameters (+96 biases). Alternatively, all 55*55 neurons in each depth slice will

now be using the same parameters. In practice during backpropagation, every neuron in the volume will compute

the gradient for its weights, but these gradients will be added up across each depth slice and only update a single

set of weights per slice.

Notice that if all neurons in a single depth slice are using the same weight vector, then the forward pass of the

CONV layer can in each depth slice be computed as a convolution of the neuron’s weights with the input volume

(Hence the name: Convolutional Layer). This is why it is common to refer to the sets of weights as a filter (or a

kernel), that is convolved with the input.

Example filters learned by Krizhevsky et al. Each of the 96 filters shown here is of size [11x11x3], and each one is shared by

the 55*55 neurons in one depth slice. Notice that the parameter sharing assumption is relatively reasonable: If detecting a

horizontal edge is important at some location in the image, it should intuitively be useful at some other location as well

due to the translationally-invariant structure of images. There is therefore no need to relearn to detect a horizontal edge at

every one of the 55*55 distinct locations in the Conv layer output volume.

Note that sometimes the parameter sharing assumption may not make sense. This is especially the case when the

input images to a ConvNet have some specific centered structure, where we should expect, for example, that

completely different features should be learned on one side of the image than another. One practical example is

when the input are faces that have been centered in the image. You might expect that different eye-specific or

hair-specific features could (and should) be learned in different spatial locations. In that case it is common to relax

the parameter sharing scheme, and instead simply call the layer a Locally-Connected Layer.

Numpy examples. To make the discussion above more concrete, lets express the same ideas but in code and

with a specific example. Suppose that the input volume is a numpy array X . Then:

A depth column (or a fibre) at position (x,y) would be the activations X[x,y,:] .

A depth slice, or equivalently an activation map at depth d would be the activations X[:,:,d] .

Conv Layer Example. Suppose that the input volume X has shape X.shape: (11,11,4) . Suppose further that

we use no zero padding (), that the filter size is , and that the stride is . The output volume

would therefore have spatial size (11-5)/2+1 = 4, giving a volume with width and height of 4. The activation map in

the output volume (call it V), would then look as follows (only some of the elements are computed in this

example):

P = 0 F = 5 S = 2

V[0,0,0] = np.sum(X[:5,:5,:] * W0) + b0

V[1,0,0] = np.sum(X[2:7,:5,:] * W0) + b0

V[2,0,0] = np.sum(X[4:9,:5,:] * W0) + b0

V[3,0,0] = np.sum(X[6:11,:5,:] * W0) + b0

Remember that in numpy, the operation * above denotes elementwise multiplication between the arrays. Notice

also that the weight vector W0 is the weight vector of that neuron and b0 is the bias. Here, W0 is assumed to

be of shape W0.shape: (5,5,4) , since the filter size is 5 and the depth of the input volume is 4. Notice that at

each point, we are computing the dot product as seen before in ordinary neural networks. Also, we see that we

are using the same weight and bias (due to parameter sharing), and where the dimensions along the width are

increasing in steps of 2 (i.e. the stride). To construct a second activation map in the output volume, we would

have:

V[0,0,1] = np.sum(X[:5,:5,:] * W1) + b1

V[1,0,1] = np.sum(X[2:7,:5,:] * W1) + b1

V[2,0,1] = np.sum(X[4:9,:5,:] * W1) + b1

V[3,0,1] = np.sum(X[6:11,:5,:] * W1) + b1

V[0,1,1] = np.sum(X[:5,2:7,:] * W1) + b1 (example of going along y)

V[2,3,1] = np.sum(X[4:9,6:11,:] * W1) + b1 (or along both)

where we see that we are indexing into the second depth dimension in V (at index 1) because we are computing

the second activation map, and that a different set of parameters (W1) is now used. In the example above, we are

for brevity leaving out some of the other operations the Conv Layer would perform to fill the other parts of the

output array V . Additionally, recall that these activation maps are often followed elementwise through an

activation function such as ReLU, but this is not shown here.

Summary. To summarize, the Conv Layer:

Accepts a volume of size

Requires four hyperparameters:

Number of filters ,

their spatial extent ,

the stride ,

the amount of zero padding .

Produces a volume of size where:

 (i.e. width and height are computed equally by symmetry)

With parameter sharing, it introduces weights per filter, for a total of weights

and biases.

In the output volume, the -th depth slice (of size) is the result of performing a valid convolution

of the -th filter over the input volume with a stride of , and then offset by -th bias.

A common setting of the hyperparameters is . However, there are common conventions

and rules of thumb that motivate these hyperparameters. See the ConvNet architectures section below.

Convolution Demo. Below is a running demo of a CONV layer. Since 3D volumes are hard to visualize, all the

volumes (the input volume (in blue), the weight volumes (in red), the output volume (in green)) are visualized with

each depth slice stacked in rows. The input volume is of size , and the CONV layer

parameters are . That is, we have two filters of size , and they are applied

with a stride of 2. Therefore, the output volume size has spatial size (5 - 3 + 2)/2 + 1 = 3. Moreover, notice that a

padding of is applied to the input volume, making the outer border of the input volume zero. The

visualization below iterates over the output activations (green), and shows that each element is computed by

× ×W1 H1 D1

K

F

S

P

× ×W2 H2 D2

= (− F + 2P)/S + 1W2 W1

= (− F + 2P)/S + 1H2 H1

= KD2

F ⋅ F ⋅ D1 (F ⋅ F ⋅) ⋅ KD1

K

d ×W2 H2

d S d

F = 3,S = 1,P = 1

= 5, = 5, = 3W1 H1 D1

K = 2,F = 3,S = 2,P = 1 3 × 3

P = 1

https://cs231n.github.io/convolutional-networks/#architectures

elementwise multiplying the highlighted input (blue) with the filter (red), summing it up, and then offsetting the

result by the bias.

Input Volume (+pad 1) (7x7x3)
x[:,:,0]
0

0

0

0

0

0

0

0

0

2

1

1

2

0

0

0

2

2

0

0

0

0

0

0

2

0

2

0

0

1

0

2

2

0

0

0

2

2

1

1

0

0

0

0

0

0

0

0

0

x[:,:,1]
0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

2

1

1

1

0

0

2

2

1

1

1

0

0

2

2

1

2

2

0

0

2

0

1

0

2

0

0

0

0

0

0

0

0

x[:,:,2]
0

0

0

0

0

0

0

0

2

1

1

1

1

0

0

1

2

0

1

2

0

0

1

2

2

0

0

0

0

1

0

1

1

1

0

0

1

0

1

1

1

0

0

0

0

0

0

0

0

Filter W0 (3x3x3)
w0[:,:,0]
0

1

1

1

0

-1

0

-1

-1

w0[:,:,1]
1

1

1

1

1

0

1

-1

1

w0[:,:,2]
0

1

1

0

0

1

1

0

-1

Bias b0 (1x1x1)
b0[:,:,0]
1

Filter W1 (3x3x3)
w1[:,:,0]
1

-1

1

-1

-1

1

-1

-1

-1

w1[:,:,1]
0

1

-1

0

0

1

1

-1

-1

w1[:,:,2]
-1

-1

1

-1

1

-1

0

-1

-1

Bias b1 (1x1x1)
b1[:,:,0]
0

Output Volume (3x3x
o[:,:,0]
-2

5

5

11

9

8

7

15

9

o[:,:,1]
-4

-7

-5

-4

-9

-7

-1

-3

1

toggle movement

Implementation as Matrix Multiplication. Note that the convolution operation essentially performs dot

products between the filters and local regions of the input. A common implementation pattern of the CONV layer

is to take advantage of this fact and formulate the forward pass of a convolutional layer as one big matrix multiply

as follows:

1. The local regions in the input image are stretched out into columns in an operation commonly called

im2col. For example, if the input is [227x227x3] and it is to be convolved with 11x11x3 filters at stride 4, then

we would take [11x11x3] blocks of pixels in the input and stretch each block into a column vector of size

11*11*3 = 363. Iterating this process in the input at stride of 4 gives (227-11)/4+1 = 55 locations along both

width and height, leading to an output matrix X_col of im2col of size [363 x 3025], where every column is

a stretched out receptive field and there are 55*55 = 3025 of them in total. Note that since the receptive

fields overlap, every number in the input volume may be duplicated in multiple distinct columns.

2. The weights of the CONV layer are similarly stretched out into rows. For example, if there are 96 filters of

size [11x11x3] this would give a matrix W_row of size [96 x 363].

3. The result of a convolution is now equivalent to performing one large matrix multiply np.dot(W_row,

X_col) , which evaluates the dot product between every filter and every receptive field location. In our

example, the output of this operation would be [96 x 3025], giving the output of the dot product of each

filter at each location.

4. The result must finally be reshaped back to its proper output dimension [55x55x96].

This approach has the downside that it can use a lot of memory, since some values in the input volume are

replicated multiple times in X_col . However, the benefit is that there are many very efficient implementations of

Matrix Multiplication that we can take advantage of (for example, in the commonly used BLAS API). Moreover, the

same im2col idea can be reused to perform the pooling operation, which we discuss next.

Backpropagation. The backward pass for a convolution operation (for both the data and the weights) is also a

convolution (but with spatially-flipped filters). This is easy to derive in the 1-dimensional case with a toy example

(not expanded on for now).

1x1 convolution. As an aside, several papers use 1x1 convolutions, as first investigated by Network in Network.

Some people are at first confused to see 1x1 convolutions especially when they come from signal processing

background. Normally signals are 2-dimensional so 1x1 convolutions do not make sense (it’s just pointwise

scaling). However, in ConvNets this is not the case because one must remember that we operate over 3-

dimensional volumes, and that the filters always extend through the full depth of the input volume. For example, if

the input is [32x32x3] then doing 1x1 convolutions would effectively be doing 3-dimensional dot products (since

the input depth is 3 channels).

Dilated convolutions. A recent development (e.g. see paper by Fisher Yu and Vladlen Koltun) is to introduce one

more hyperparameter to the CONV layer called the dilation. So far we’ve only discussed CONV filters that are

contiguous. However, it’s possible to have filters that have spaces between each cell, called dilation. As an

example, in one dimension a filter w of size 3 would compute over input x the following: w[0]*x[0] +

w[1]*x[1] + w[2]*x[2] . This is dilation of 0. For dilation 1 the filter would instead compute w[0]*x[0] +

w[1]*x[2] + w[2]*x[4] ; In other words there is a gap of 1 between the applications. This can be very useful in

some settings to use in conjunction with 0-dilated filters because it allows you to merge spatial information across

the inputs much more agressively with fewer layers. For example, if you stack two 3x3 CONV layers on top of each

other then you can convince yourself that the neurons on the 2nd layer are a function of a 5x5 patch of the input

(we would say that the effective receptive field of these neurons is 5x5). If we use dilated convolutions then this

effective receptive field would grow much quicker.

Pooling Layer

It is common to periodically insert a Pooling layer in-between successive Conv layers in a ConvNet architecture. Its

function is to progressively reduce the spatial size of the representation to reduce the amount of parameters and

computation in the network, and hence to also control overfitting. The Pooling Layer operates independently on

every depth slice of the input and resizes it spatially, using the MAX operation. The most common form is a

pooling layer with filters of size 2x2 applied with a stride of 2 downsamples every depth slice in the input by 2

along both width and height, discarding 75% of the activations. Every MAX operation would in this case be taking

a max over 4 numbers (little 2x2 region in some depth slice). The depth dimension remains unchanged. More

generally, the pooling layer:

Accepts a volume of size

Requires two hyperparameters:

their spatial extent ,

the stride ,

Produces a volume of size where:

Introduces zero parameters since it computes a fixed function of the input

For Pooling layers, it is not common to pad the input using zero-padding.

It is worth noting that there are only two commonly seen variations of the max pooling layer found in practice: A

pooling layer with (also called overlapping pooling), and more commonly . Pooling

sizes with larger receptive fields are too destructive.

× ×W1 H1 D1

F

S

× ×W2 H2 D2

= (− F)/S + 1W2 W1

= (− F)/S + 1H2 H1

=D2 D1

F = 3,S = 2 F = 2,S = 2

http://www.netlib.org/blas/
http://arxiv.org/abs/1312.4400
https://arxiv.org/abs/1511.07122

General pooling. In addition to max pooling, the pooling units can also perform other functions, such as average
pooling or even L2-norm pooling. Average pooling was often used historically but has recently fallen out of favor

compared to the max pooling operation, which has been shown to work better in practice.

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. Left: In this

example, the input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size

[112x112x64]. Notice that the volume depth is preserved. Right: The most common downsampling operation is max,

giving rise to max pooling, here shown with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).

Backpropagation. Recall from the backpropagation chapter that the backward pass for a max(x, y) operation has

a simple interpretation as only routing the gradient to the input that had the highest value in the forward pass.

Hence, during the forward pass of a pooling layer it is common to keep track of the index of the max activation

(sometimes also called the switches) so that gradient routing is efficient during backpropagation.

Getting rid of pooling. Many people dislike the pooling operation and think that we can get away without it. For

example, Striving for Simplicity: The All Convolutional Net proposes to discard the pooling layer in favor of

architecture that only consists of repeated CONV layers. To reduce the size of the representation they suggest

using larger stride in CONV layer once in a while. Discarding pooling layers has also been found to be important

in training good generative models, such as variational autoencoders (VAEs) or generative adversarial networks

(GANs). It seems likely that future architectures will feature very few to no pooling layers.

Normalization Layer

Many types of normalization layers have been proposed for use in ConvNet architectures, sometimes with the

intentions of implementing inhibition schemes observed in the biological brain. However, these layers have since

fallen out of favor because in practice their contribution has been shown to be minimal, if any. For various types of

normalizations, see the discussion in Alex Krizhevsky’s cuda-convnet library API.

Fully-connected layer

Neurons in a fully connected layer have full connections to all activations in the previous layer, as seen in regular

Neural Networks. Their activations can hence be computed with a matrix multiplication followed by a bias offset.

See the Neural Network section of the notes for more information.

Converting FC layers to CONV layers

It is worth noting that the only difference between FC and CONV layers is that the neurons in the CONV layer are

connected only to a local region in the input, and that many of the neurons in a CONV volume share parameters.

However, the neurons in both layers still compute dot products, so their functional form is identical. Therefore, it

turns out that it’s possible to convert between FC and CONV layers:

For any CONV layer there is an FC layer that implements the same forward function. The weight matrix

would be a large matrix that is mostly zero except for at certain blocks (due to local connectivity) where the

http://arxiv.org/abs/1412.6806
http://code.google.com/p/cuda-convnet/wiki/LayerParams#Local_response_normalization_layer_(same_map)

weights in many of the blocks are equal (due to parameter sharing).

Conversely, any FC layer can be converted to a CONV layer. For example, an FC layer with that

is looking at some input volume of size can be equivalently expressed as a CONV layer with

. In other words, we are setting the filter size to be exactly the size of

the input volume, and hence the output will simply be since only a single depth column “fits”

across the input volume, giving identical result as the initial FC layer.

FC->CONV conversion. Of these two conversions, the ability to convert an FC layer to a CONV layer is

particularly useful in practice. Consider a ConvNet architecture that takes a 224x224x3 image, and then uses a

series of CONV layers and POOL layers to reduce the image to an activations volume of size 7x7x512 (in an

AlexNet architecture that we’ll see later, this is done by use of 5 pooling layers that downsample the input spatially

by a factor of two each time, making the final spatial size 224/2/2/2/2/2 = 7). From there, an AlexNet uses two FC

layers of size 4096 and finally the last FC layers with 1000 neurons that compute the class scores. We can convert

each of these three FC layers to CONV layers as described above:

Replace the first FC layer that looks at [7x7x512] volume with a CONV layer that uses filter size ,

giving output volume [1x1x4096].

Replace the second FC layer with a CONV layer that uses filter size , giving output volume [1x1x4096]

Replace the last FC layer similarly, with , giving final output [1x1x1000]

Each of these conversions could in practice involve manipulating (e.g. reshaping) the weight matrix in each FC

layer into CONV layer filters. It turns out that this conversion allows us to “slide” the original ConvNet very

efficiently across many spatial positions in a larger image, in a single forward pass.

For example, if 224x224 image gives a volume of size [7x7x512] - i.e. a reduction by 32, then forwarding an image

of size 384x384 through the converted architecture would give the equivalent volume in size [12x12x512], since

384/32 = 12. Following through with the next 3 CONV layers that we just converted from FC layers would now

give the final volume of size [6x6x1000], since (12 - 7)/1 + 1 = 6. Note that instead of a single vector of class scores

of size [1x1x1000], we’re now getting an entire 6x6 array of class scores across the 384x384 image.

Naturally, forwarding the converted ConvNet a single time is much more efficient than iterating the original

ConvNet over all those 36 locations, since the 36 evaluations share computation. This trick is often used in practice

to get better performance, where for example, it is common to resize an image to make it bigger, use a converted

ConvNet to evaluate the class scores at many spatial positions and then average the class scores.

Lastly, what if we wanted to efficiently apply the original ConvNet over the image but at a stride smaller than 32

pixels? We could achieve this with multiple forward passes. For example, note that if we wanted to use a stride of

16 pixels we could do so by combining the volumes received by forwarding the converted ConvNet twice: First

over the original image and second over the image but with the image shifted spatially by 16 pixels along both

width and height.

K = 4096
7 × 7 × 512

F = 7,P = 0,S = 1,K = 4096
1 × 1 × 4096

F = 7

F = 1
F = 1

W

Evaluating the original ConvNet (with FC layers) independently across 224x224 crops of the 384x384 image in
strides of 32 pixels gives an identical result to forwarding the converted ConvNet one time.

