
Disclaimer: This note was modified from cs231n lecture notes by Prof. Li Fei-Fei at Stanford University.

This is an introductory lecture designed to introduce people from outside of Computer Vision to the Image

Classification problem, and the data-driven approach.

The Table of Contents:

Image Classification Task

Nearest Neighbor Classifiers

k-Nearest Neighbor Classifier

Validation sets for Hyperparameter tuning

Applying kNN in practice

Image Classification Task
Motivation. In this section we will introduce the Image Classification problem, which is the task of assigning an

input image one label from a fixed set of categories. This is one of the core problems in Computer Vision that,

despite its simplicity, has a large variety of practical applications. Moreover, as we will see later in the course, many

other seemingly distinct Computer Vision tasks (such as object detection, segmentation) can be reduced to image

classification.

Example. For example, in the image below an image classification model takes a single image and assigns

probabilities to 4 labels, {cat, dog, hat, mug}. As shown in the image, keep in mind that to a computer an image is

represented as one large 3-dimensional array of numbers. In this example, the cat image is 248 pixels wide, 400

pixels tall, and has three color channels Red,Green,Blue (or RGB for short). Therefore, the image consists of 248 x

400 x 3 numbers, or a total of 297,600 numbers. Each number is an integer that ranges from 0 (black) to 255

(white). Our task is to turn this quarter of a million numbers into a single label, such as “cat”.

The task in Image Classification is to predict a single label (or a distribution over labels as shown here to indicate our

confidence) for a given image. Images are 3-dimensional arrays of integers from 0 to 255, of size Width x Height x 3. The 3

represents the three color channels Red, Green, Blue.

Challenges. Since this task of recognizing a visual concept (e.g. cat) is relatively trivial for a human to perform, it is

worth considering the challenges involved from the perspective of a Computer Vision algorithm. As we present

Lecture 1. Nearest Neighbor Classifiers

file:///C:/Users/joonseok/Desktop/MLDL%20Notes/Note_01.html

(an inexhaustive) list of challenges below, keep in mind the raw representation of images as a 3-D array of

brightness values:

Viewpoint variation. A single instance of an object can be oriented in many ways with respect to the

camera.

Scale variation. Visual classes often exhibit variation in their size (size in the real world, not only in terms of

their extent in the image).

Deformation. Many objects of interest are not rigid bodies and can be deformed in extreme ways.

Occlusion. The objects of interest can be occluded. Sometimes only a small portion of an object (as little as

few pixels) could be visible.

Illumination conditions. The effects of illumination are drastic on the pixel level.

Background clutter. The objects of interest may blend into their environment, making them hard to

identify.

Intra-class variation. The classes of interest can often be relatively broad, such as chair. There are many

different types of these objects, each with their own appearance.

A good image classification model must be invariant to the cross product of all these variations, while

simultaneously retaining sensitivity to the inter-class variations.

Data-driven approach. How might we go about writing an algorithm that can classify images into distinct

categories? Unlike writing an algorithm for, for example, sorting a list of numbers, it is not obvious how one might

write an algorithm for identifying cats in images. Therefore, instead of trying to specify what every one of the

categories of interest look like directly in code, the approach that we will take is not unlike one you would take

with a child: we’re going to provide the computer with many examples of each class and then develop learning

algorithms that look at these examples and learn about the visual appearance of each class. This approach is

referred to as a data-driven approach, since it relies on first accumulating a training dataset of labeled images.

Here is an example of what such a dataset might look like:

An example training set for four visual categories. In practice we may have thousands of categories and hundreds of

thousands of images for each category.

The image classification pipeline. We’ve seen that the task in Image Classification is to take an array of pixels

that represents a single image and assign a label to it. Our complete pipeline can be formalized as follows:

Input: Our input consists of a set of N images, each labeled with one of K different classes. We refer to this

data as the training set.
Learning: Our task is to use the training set to learn what every one of the classes looks like. We refer to this

step as training a classifier, or learning a model.
Evaluation: In the end, we evaluate the quality of the classifier by asking it to predict labels for a new set of

images that it has never seen before. We will then compare the true labels of these images to the ones

predicted by the classifier. Intuitively, we’re hoping that a lot of the predictions match up with the true

answers (which we call the ground truth).

Nearest Neighbor Classifiers
As our first approach, we will develop what we call a Nearest Neighbor Classifier. This classifier has nothing to

do with Convolutional Neural Networks and it is very rarely used in practice, but it will allow us to get an idea

about the basic approach to an image classification problem.

Example image classification dataset: CIFAR-10. One popular toy image classification dataset is the CIFAR-10

dataset. This dataset consists of 60,000 tiny images that are 32 pixels high and wide. Each image is labeled with

one of 10 classes (for example “airplane, automobile, bird, etc”). These 60,000 images are partitioned into a

training set of 50,000 images and a test set of 10,000 images. In the image below you can see 10 random example

images from each one of the 10 classes:

Left: Example images from the CIFAR-10 dataset. Right: first column shows a few test images and next to each we show

the top 10 nearest neighbors in the training set according to pixel-wise difference.

Suppose now that we are given the CIFAR-10 training set of 50,000 images (5,000 images for every one of the

labels), and we wish to label the remaining 10,000. The nearest neighbor classifier will take a test image, compare it

to every single one of the training images, and predict the label of the closest training image. In the image above

and on the right you can see an example result of such a procedure for 10 example test images. Notice that in

only about 3 out of 10 examples an image of the same class is retrieved, while in the other 7 examples this is not

the case. For example, in the 8th row the nearest training image to the horse head is a red car, presumably due to

the strong black background. As a result, this image of a horse would in this case be mislabeled as a car.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

You may have noticed that we left unspecified the details of exactly how we compare two images, which in this

case are just two blocks of 32 x 32 x 3. One of the simplest possibilities is to compare the images pixel by pixel and

add up all the differences. In other words, given two images and representing them as vectors , a

reasonable choice for comparing them might be the L1 distance:

Where the sum is taken over all pixels. Here is the procedure visualized:

An example of using pixel-wise differences to compare two images with L1 distance (for one color channel in this

example). Two images are subtracted elementwise and then all differences are added up to a single number. If two images

are identical the result will be zero. But if the images are very different the result will be large.

Let’s also look at how we might implement the classifier in code. First, let’s load the CIFAR-10 data into memory as

4 arrays: the training data/labels and the test data/labels. In the code below, Xtr (of size 50,000 x 32 x 32 x 3)

holds all the images in the training set, and a corresponding 1-dimensional array Ytr (of length 50,000) holds

the training labels (from 0 to 9):

Xtr, Ytr, Xte, Yte = load_CIFAR10('data/cifar10/') # a magic function we provide

flatten out all images to be one-dimensional

Xtr_rows = Xtr.reshape(Xtr.shape[0], 32 * 32 * 3) # Xtr_rows becomes 50000 x 3072

Xte_rows = Xte.reshape(Xte.shape[0], 32 * 32 * 3) # Xte_rows becomes 10000 x 3072

Now that we have all images stretched out as rows, here is how we could train and evaluate a classifier:

nn = NearestNeighbor() # create a Nearest Neighbor classifier class

nn.train(Xtr_rows, Ytr) # train the classifier on the training images and labels

Yte_predict = nn.predict(Xte_rows) # predict labels on the test images

and now print the classification accuracy, which is the average number

of examples that are correctly predicted (i.e. label matches)

print 'accuracy: %f' % (np.mean(Yte_predict == Yte))

Notice that as an evaluation criterion, it is common to use the accuracy, which measures the fraction of

predictions that were correct. Notice that all classifiers we will build satisfy this one common API: they have a

train(X,y) function that takes the data and the labels to learn from. Internally, the class should build some

kind of model of the labels and how they can be predicted from the data. And then there is a predict(X)

function, which takes new data and predicts the labels. Of course, we’ve left out the meat of things - the actual

classifier itself. Here is an implementation of a simple Nearest Neighbor classifier with the L1 distance that satisfies

this template:

import numpy as np

class NearestNeighbor(object):

 def __init__(self):

 pass

,I1 I2

(,) = | − |d1 I1 I2 ∑
p

I
p
1 I

p
2

 def train(self, X, y):

 """ X is N x D where each row is an example. Y is 1-dimension of size N """

 # the nearest neighbor classifier simply remembers all the training data

 self.Xtr = X

 self.ytr = y

 def predict(self, X):

 """ X is N x D where each row is an example we wish to predict label for """

 num_test = X.shape[0]

 # lets make sure that the output type matches the input type

 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

 # loop over all test rows

 for i in range(num_test):

 # find the nearest training image to the i'th test image

 # using the L1 distance (sum of absolute value differences)

 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)

 min_index = np.argmin(distances) # get the index with smallest distance

 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

 return Ypred

If you ran this code, you would see that this classifier only achieves 38.6% on CIFAR-10. That’s more impressive

than guessing at random (which would give 10% accuracy since there are 10 classes), but nowhere near human

performance (which is estimated at about 94%) or near state-of-the-art Convolutional Neural Networks that

achieve about 95%, matching human accuracy (see the leaderboard of a recent Kaggle competition on CIFAR-10).

The choice of distance.
There are many other ways of computing distances between vectors. Another common

choice could be to instead use the L2 distance, which has the geometric interpretation of computing the

euclidean distance between two vectors. The distance takes the form:

In other words we would be computing the pixelwise difference as before, but this time we square all of them, add

them up and finally take the square root. In numpy, using the code from above we would need to only replace a

single line of code. The line that computes the distances:

distances = np.sqrt(np.sum(np.square(self.Xtr - X[i,:]), axis = 1))

Note that I included the np.sqrt call above, but in a practical nearest neighbor application we could leave out

the square root operation because square root is a monotonic function. That is, it scales the absolute sizes of the

distances but it preserves the ordering, so the nearest neighbors with or without it are identical. If you ran the

Nearest Neighbor classifier on CIFAR-10 with this distance, you would obtain 35.4% accuracy (slightly lower than

our L1 distance result).

L1 vs. L2. It is interesting to consider differences between the two metrics. In particular, the L2 distance is much

more unforgiving than the L1 distance when it comes to differences between two vectors. That is, the L2 distance

prefers many medium disagreements to one big one. L1 and L2 distances (or equivalently the L1/L2 norms of the

differences between a pair of images) are the most commonly used special cases of a p-norm.

k - Nearest Neighbor Classifier

(,) =d2 I1 I2 ∑
p

(−)I
p
1 I

p
2

2
− −−−−−−−−−−

√

https://karpathy.github.io/2011/04/27/manually-classifying-cifar10/
https://www.kaggle.com/c/cifar-10/leaderboard
https://planetmath.org/vectorpnorm

You may have noticed that it is strange to only use the label of the nearest image when we wish to make a

prediction. Indeed, it is almost always the case that one can do better by using what’s called a k-Nearest
Neighbor Classifier. The idea is very simple: instead of finding the single closest image in the training set, we will

find the top k closest images, and have them vote on the label of the test image. In particular, when k = 1, we

recover the Nearest Neighbor classifier. Intuitively, higher values of k have a smoothing effect that makes the

classifier more resistant to outliers:

An example of the difference between Nearest Neighbor and a 5-Nearest Neighbor classifier, using 2-dimensional points

and 3 classes (red, blue, green). The colored regions show the decision boundaries induced by the classifier with an L2

distance. The white regions show points that are ambiguously classified (i.e. class votes are tied for at least two classes).

Notice that in the case of a NN classifier, outlier datapoints (e.g. green point in the middle of a cloud of blue points) create

small islands of likely incorrect predictions, while the 5-NN classifier smooths over these irregularities, likely leading to

better generalization on the test data (not shown). Also note that the gray regions in the 5-NN image are caused by ties

in the votes among the nearest neighbors (e.g. 2 neighbors are red, next two neighbors are blue, last neighbor is green).

In practice, you will almost always want to use k-Nearest Neighbor. But what value of k should you use? We turn

to this problem next.

Validation sets for Hyperparameter tuning

The k-nearest neighbor classifier requires a setting for k. But what number works best? Additionally, we saw that

there are many different distance functions we could have used: L1 norm, L2 norm, there are many other choices

we didn’t even consider (e.g. dot products). These choices are called hyperparameters and they come up very

often in the design of many Machine Learning algorithms that learn from data. It’s often not obvious what

values/settings one should choose.

You might be tempted to suggest that we should try out many different values and see what works best. That is a

fine idea and that’s indeed what we will do, but this must be done very carefully. In particular, we cannot use the
test set for the purpose of tweaking hyperparameters. Whenever you’re designing Machine Learning

algorithms, you should think of the test set as a very precious resource that should ideally never be touched until

one time at the very end. Otherwise, the very real danger is that you may tune your hyperparameters to work well

on the test set, but if you were to deploy your model you could see a significantly reduced performance. In

practice, we would say that you overfit to the test set. Another way of looking at it is that if you tune your

hyperparameters on the test set, you are effectively using the test set as the training set, and therefore the

performance you achieve on it will be too optimistic with respect to what you might actually observe when you

deploy your model. But if you only use the test set once at end, it remains a good proxy for measuring the

generalization of your classifier (we will see much more discussion surrounding generalization later in the class).

Luckily, there is a correct way of tuning the hyperparameters and it does not touch the test set at all. The idea is to

split our training set in two: a slightly smaller training set, and what we call a validation set. Using CIFAR-10 as an

example, we could for example use 49,000 of the training images for training, and leave 1,000 aside for validation.

This validation set is essentially used as a fake test set to tune the hyper-parameters.

Evaluate on the test set only a single time, at the very end.

Here is what this might look like in the case of CIFAR-10:

assume we have Xtr_rows, Ytr, Xte_rows, Yte as before

recall Xtr_rows is 50,000 x 3072 matrix

Xval_rows = Xtr_rows[:1000, :] # take first 1000 for validation

Yval = Ytr[:1000]

Xtr_rows = Xtr_rows[1000:, :] # keep last 49,000 for train

Ytr = Ytr[1000:]

find hyperparameters that work best on the validation set

validation_accuracies = []

for k in [1, 3, 5, 10, 20, 50, 100]:

 # use a particular value of k and evaluation on validation data

 nn = NearestNeighbor()

 nn.train(Xtr_rows, Ytr)

 # here we assume a modified NearestNeighbor class that can take a k as input

 Yval_predict = nn.predict(Xval_rows, k = k)

 acc = np.mean(Yval_predict == Yval)

 print 'accuracy: %f' % (acc,)

 # keep track of what works on the validation set

 validation_accuracies.append((k, acc))

By the end of this procedure, we could plot a graph that shows which values of k work best. We would then stick

with this value and evaluate once on the actual test set.

Cross-validation.
In cases where the size of your training data (and therefore also the validation data) might be

small, people sometimes use a more sophisticated technique for hyperparameter tuning called cross-validation.

Working with our previous example, the idea is that instead of arbitrarily picking the first 1000 datapoints to be the

validation set and rest training set, you can get a better and less noisy estimate of how well a certain value of k
works by iterating over different validation sets and averaging the performance across these. For example, in 5-

fold cross-validation, we would split the training data into 5 equal folds, use 4 of them for training, and 1 for

validation. We would then iterate over which fold is the validation fold, evaluate the performance, and finally

average the performance across the different folds.

Example of a 5-fold cross-validation run for the parameter

k. For each value of k we train on 4 folds and evaluate on

the 5th. Hence, for each k we receive 5 accuracies on the

validation fold (accuracy is the y-axis, each result is a

point). The trend line is drawn through the average of the

results for each k and the error bars indicate the standard

deviation. Note that in this particular case, the cross-

validation suggests that a value of about k = 7 works best

on this particular dataset (corresponding to the peak in

the plot). If we used more than 5 folds, we might expect

to see a smoother (i.e. less noisy) curve.

Split your training set into training set and a validation set. Use validation set to tune all hyperparameters. At the
end run a single time on the test set and report performance.

In practice. In practice, people prefer to avoid cross-validation in favor of having a single validation split, since

cross-validation can be computationally expensive. The splits people tend to use is between 50%-90% of the

training data for training and rest for validation. However, this depends on multiple factors: For example if the

number of hyperparameters is large you may prefer to use bigger validation splits. If the number of examples in

the validation set is small (perhaps only a few hundred or so), it is safer to use cross-validation. Typical number of

folds you can see in practice would be 3-fold, 5-fold or 10-fold cross-validation.

Common data splits. A training and test set is given. The training set is split into folds (for example 5 folds here). The folds

1-4 become the training set. One fold (e.g. fold 5 here in yellow) is denoted as the Validation fold and is used to tune the

hyperparameters. Cross-validation goes a step further and iterates over the choice of which fold is the validation fold,

separately from 1-5. This would be referred to as 5-fold cross-validation. In the very end once the model is trained and all

the best hyperparameters were determined, the model is evaluated a single time on the test data (red).

Pros and Cons of Nearest Neighbor classifier.

It is worth considering some advantages and drawbacks of the Nearest Neighbor classifier. Clearly, one advantage

is that it is very simple to implement and understand. Additionally, the classifier takes no time to train, since all

that is required is to store and possibly index the training data. However, we pay that computational cost at test

time, since classifying a test example requires a comparison to every single training example. This is backwards,

since in practice we often care about the test time efficiency much more than the efficiency at training time. In

fact, the deep neural networks we will develop later in this class shift this tradeoff to the other extreme: They are

very expensive to train, but once the training is finished it is very cheap to classify a new test example. This mode

of operation is much more desirable in practice.

As an aside, the computational complexity of the Nearest Neighbor classifier is an active area of research, and

several Approximate Nearest Neighbor (ANN) algorithms and libraries exist that can accelerate the nearest

neighbor lookup in a dataset (e.g. FLANN). These algorithms allow one to trade off the correctness of the nearest

neighbor retrieval with its space/time complexity during retrieval, and usually rely on a pre-processing/indexing

stage that involves building a kdtree, or running the k-means algorithm.

The Nearest Neighbor Classifier may sometimes be a good choice in some settings (especially if the data is low-

dimensional), but it is rarely appropriate for use in practical image classification settings. One problem is that

images are high-dimensional objects (i.e. they often contain many pixels), and distances over high-dimensional

spaces can be very counter-intuitive. The image below illustrates the point that the pixel-based L2 similarities we

developed above are very different from perceptual similarities:

Pixel-based distances on high-dimensional data (and images especially) can be very unintuitive. An original image (left)

and three other images next to it that are all equally far away from it based on L2 pixel distance. Clearly, the pixel-wise

distance does not correspond at all to perceptual or semantic similarity.

Here is one more visualization to convince you that using pixel differences to compare images is inadequate. We

can use a visualization technique called t-SNE to take the CIFAR-10 images and embed them in two dimensions so

https://github.com/mariusmuja/flann
https://lvdmaaten.github.io/tsne/

that their (local) pairwise distances are best preserved. In this visualization, images that are shown nearby are

considered to be very near according to the L2 pixelwise distance we developed above:

CIFAR-10 images embedded in two dimensions with t-SNE. Images that are nearby on this image are considered to be

close based on the L2 pixel distance. Notice the strong effect of background rather than semantic class differences.

In particular, note that images that are nearby each other are much more a function of the general color

distribution of the images, or the type of background rather than their semantic identity. For example, a dog can

be seen very near a frog since both happen to be on white background. Ideally we would like images of all of the

10 classes to form their own clusters, so that images of the same class are nearby to each other regardless of

irrelevant characteristics and variations (such as the background). However, to get this property we will have to go

beyond raw pixels.

Applying kNN in practice

If you wish to apply kNN in practice (hopefully not on images, or perhaps as only a baseline) proceed as follows:

1. Preprocess your data: Normalize the features in your data (e.g. one pixel in images) to have zero mean and

unit variance. We will cover this in more detail in later sections, and chose not to cover data normalization in

this section because pixels in images are usually homogeneous and do not exhibit widely different

distributions, alleviating the need for data normalization.

2. If your data is very high-dimensional, consider using a dimensionality reduction technique such as PCA (wiki

ref, CS229ref, blog ref), NCA (wiki ref, blog ref), or even Random Projections.

3. Split your training data randomly into train/val splits. As a rule of thumb, between 70-90% of your data

usually goes to the train split. This setting depends on how many hyperparameters you have and how much

of an influence you expect them to have. If there are many hyperparameters to estimate, you should err on

the side of having larger validation set to estimate them effectively. If you are concerned about the size of

your validation data, it is best to split the training data into folds and perform cross-validation. If you can

afford the computational budget it is always safer to go with cross-validation (the more folds the better, but

more expensive).

4. Train and evaluate the kNN classifier on the validation data (for all folds, if doing cross-validation) for many

choices of k (e.g. the more the better) and across different distance types (L1 and L2 are good candidates)

5. If your kNN classifier is running too long, consider using an Approximate Nearest Neighbor library (e.g.

FLANN) to accelerate the retrieval (at cost of some accuracy).

6. Take note of the hyperparameters that gave the best results. There is a question of whether you should use

the full training set with the best hyperparameters, since the optimal hyperparameters might change if you

https://en.wikipedia.org/wiki/Principal_component_analysis
http://cs229.stanford.edu/notes/cs229-notes10.pdf
https://web.archive.org/web/20150503165118/http://www.bigdataexaminer.com:80/understanding-dimensionality-reduction-principal-component-analysis-and-singular-value-decomposition/
https://en.wikipedia.org/wiki/Neighbourhood_components_analysis
https://kevinzakka.github.io/2020/02/10/nca/
https://scikit-learn.org/stable/modules/random_projection.html
https://github.com/mariusmuja/flann

were to fold the validation data into your training set (since the size of the data would be larger). In practice

it is cleaner to not use the validation data in the final classifier and consider it to be burned on estimating

the hyperparameters. Evaluate the best model on the test set. Report the test set accuracy and declare the

result to be the performance of the kNN classifier on your data.

